Computational approach for improving of known perspective SARS-COV-2 MPRO inhibitors

Anatoliy A. Bulygin

XXVIII Symposium on Bioinformatics and Computer-Aided Drug Discovery

The goal of the study is to find a way to improve known perspective inhibitors of M\textsubscript{pro} by computer methods.

To reach the goal we have achieved the next objectives:

- to conduct an extensive review of Mpro inhibitors and understand structure-activity correlations;

- assessment of pharmacokinetic parameters of known and about 50 new compounds using SwissADME online tool (Daina A. et al., 2017), the most attention was paid to solubility and GI absorption, because they define bioavailability;

- molecular dynamics simulations and binding energy calculations of about 20 selected compounds using GROMACS software (Abraham M.J. et al., 2015; Kumari R. et al., 2014).
Features of a good M^{pro} inhibitor

- S1 residue should resemble glutamine with one H-bond donor and one H-bond acceptor;
- S2 residue should have 3-bond length;
- a backbone need to be rigid for rapid binding and bulky somewhere at the left half (S3) for selectivity.
Pre-Steady-State Kinetics of the SARS-CoV-2 Main Protease as a Powerful Tool for Antiviral Drug Discovery

Maria Yu. Zakharova1,3, Alexander A. Kuznetsova5, Victoria I. Uvarova1, Anastasiia D. Fomina1,5, Liubov I. Kozlovskaya4, Elena N. Kalibera1, Inna N. Kurbatskia1, Ivan V. Smirnov1,5, Anatoly A. Bulygin1,7, Vera D. Kror1, Olga S. Fedorova1, Alexandre Varnek6, Dmitry I. Osoledkin4,6,7, Aydar A. Ishmukhametov5,7, Alexey M. Egorov1,4,8, Alexander G. Gabibov1,4,8, and Nikita A. Kuznetsov1,9

1Institute of Bioorganic Chemistry, Russian Academy of Sciences (RAS), Moscow, Russia
2Institute of Translational Medicine, Prokhorov Russian National Research Medical University, Moscow, Russia
3Institute of Chemical Biology and Fundamental Medicine, Siberian Branch (SB) of RAS, Novosibirsk, Russia
4FSAS "Chumakov FSC R&D IBP RAS" (Institute of Poliomyelitis), Moscow, Russia
5Lomonosov Moscow State University, Moscow, Russia
6Laboratoire de Chimie minute, UMR 7140 CNRS, Université de Strasbourg, Strasbourg, France
7Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
8Department of Biology and Biotechnology, Higher School of Economics, Moscow, Russia
9Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia

The design of effective target-specific drugs for COVID-19 treatment has become an intriguing challenge for modern science. The SARS-CoV-2 main protease, MPro, responsible for the processing of SARS-CoV-2 polyproteins and production of individual components of viral replication machinery, is an attractive candidate target for drug discovery. Specific MPro inhibitors have turned out to be promising antiviral agents. Thus, an effective platform for quantitative screening of MPro-targeting molecules is urgently needed. Here, we propose a pre–steady-state kinetic analysis of the interaction of MPro with inhibitors as a basis for such a platform. We examined the kinetic mechanism of peptide substrate binding and cleavage by wild-type MPro and by its catalytically inactive mutant C145A. The enzyme induces conformational changes of the peptide during the reaction. The inhibition of MPro by bocceprevir, telaprevir, GC-376, PF-00835231, or thimerosal was investigated. Detailed pre–steady-state kinetics of the interaction of the wild-type enzyme with the most potent inhibitor, PF-00835231, revealed a two-step binding mechanism, followed by covalent complex formation. The C145A MPro mutant interacts with PF-00835231 approximately 100-fold less effectively. Nevertheless, the binding constant of PF-00835231 toward C145A MPro is still good enough to inhibit the enzyme. Therefore, our results suggest that even noncovalent inhibitor binding due to a fine conformational fit into the active site is sufficient for efficient inhibition. A structure-based virtual screening and a subsequent detailed assessment of inhibition efficacy allowed us to select two compounds as promising noncovalent inhibitor leads of SARS-CoV-2 MPro.
Thank you for your attention

This study was supported by Russian-State-funded project #121112900214-2.

Institute of Chemical Biology and Fundamental Medicine
Laboratory of biopolymer’s modification
A.A. Bulygin
N.A. Kuznetsov
O.S. Fedorova
We thank T. Tugashev for the help in computer modeling.