Инструкция пользователя веб-приложения MetaPASS

Веб приложение MetaPASS предназначено для анализа вероятных спектров биологической активности лекарственно-подобных органических соединений с учетом их метаболизма.

Доступ

Вход в Систему осуществляется с ПК пользователя, подключенного к сети Internet через веб-браузер посредством ввода в адресную строку адреса ресурса http://www.way2drug.com/metapass

Стартовая страница выглядит следующим образом (Рис.1):

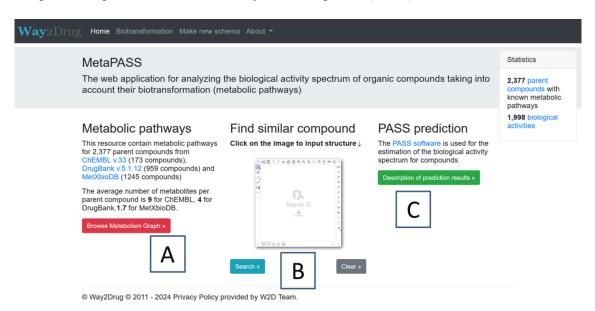


Рис 1. Стартовая страница ресурса Metapass

На данной странице пользователь может (Рис.1):

1. Нажав кнопку «Browse Metabolism» (A) получить таблицу с названиями соединений, схемы метаболизма которых представлены в MetaPASS 2024;

- 2. Ввести структурную формулу соединения (В) и нажав кнопку «Search» выполнить поиск похожих структур в двух выборках среди всех родительских ЛПОСсоединений и среди всех метаболитов;
- 3. Получить информацию об интерпретации результата прогноза биологической активности с помощью прогноза PASS (C).

Верхнее меню состоит из четырех подпунктов

- 1. Ноте при нажатии на данный пункт пользователь переходит на стартовую страницу
- 2. Biotransformation при нажатии на данный пункт пользователь переходит на основную страницу, содержащую схемы метаболизма и агрегированный прогноз биологической активности
- 3. Make new schema при нажатии на данный пункт пользователь переходит на страницу создания схем метаболизма
- 4. About при нажатии на данный пункт для пользователя открываются следующие подпункты:
 - 4.1. «List of predicted biological activities» при нажатии на данный пункт появляется модульное окно с перечнем прогнозируемых активностей (рис 2)
 - 4.2. «User Guide» при нажатии на данный пункт происходит скачивание pdf файла с руководством пользователя
 - 4.3. «Contacts» при нажатии на данный пункт появляется диалоговое окно с адресом электронной почты для обратной связи (рис 3)

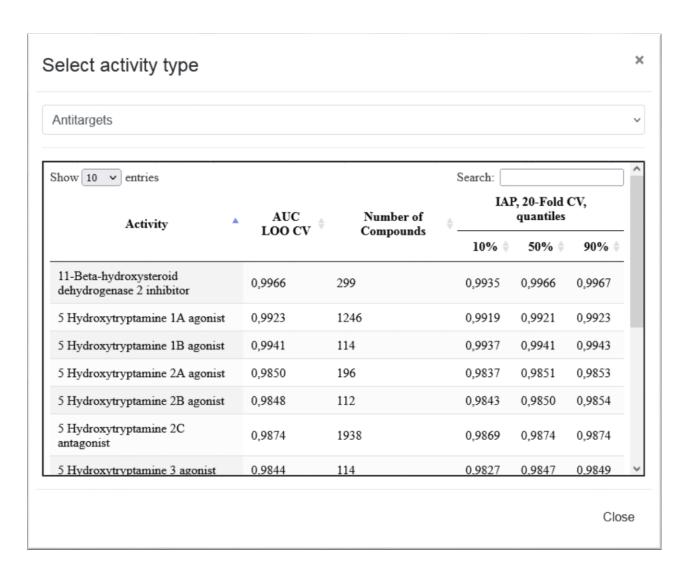


Рис 2. Модульное окно с перечнем прогнозируемых активностей

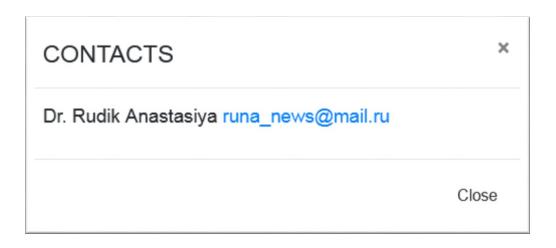
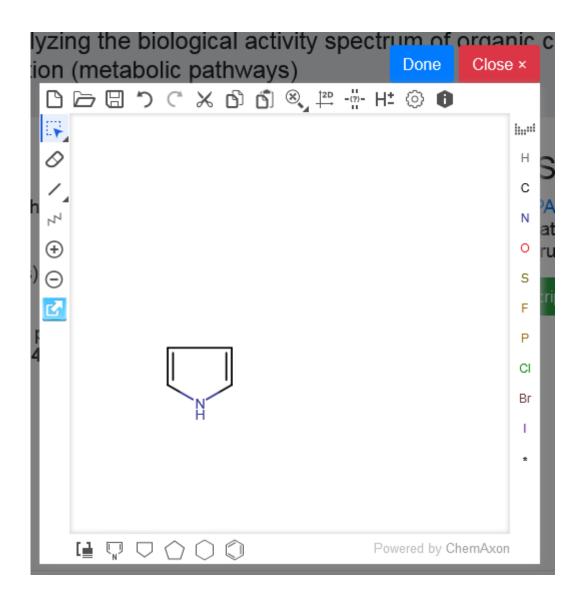


Рис 3. Модульное окно с адресом электронной почты для обратной связи


В модульном окне с перечнем прогнозируемых активностей можно выбрать категорию прогнозируемых активностей, среди которых

- Фармакологические эффекты, Е.
- Молекулярные механизмы действия, М.
- Токсичность и нежелательные побочные эффекты, Т.
- Нежелательные мишени, А.
- Влияние на метаболизм ксенобиотиков, Z.
- Влияние на генную экспрессию, G.
- Влияние на белки-транспортёры, С.

Для каждой активности представлены значения точности, рассчитанной при LOO CV и 20-fold CV.

Поиск соединений, похожих на искомое

При нажатии на изображение апплета Marvin JS (Рис 1. В) открывается редактор структурных формул Marvin JS, который позволяет как нарисовать химическую структуру, так и импортировать ее из различных форматов (SMILES, SDF, MOL, Inchi и др)

После ввода XC необходимо нажать кнопку «done» для импорт нарисованной структуры в окно ввода после чего необходимо нажать кнопку «Search» для поиска похожих соединений. Таблица с результатами поиска похожих соединений появится спустя

несколько секунд внизу страницы. Помимо структурной формулы и названия соединений в таблице содержатся оценки сходства посчитанные с использованием различных дескрипторов.

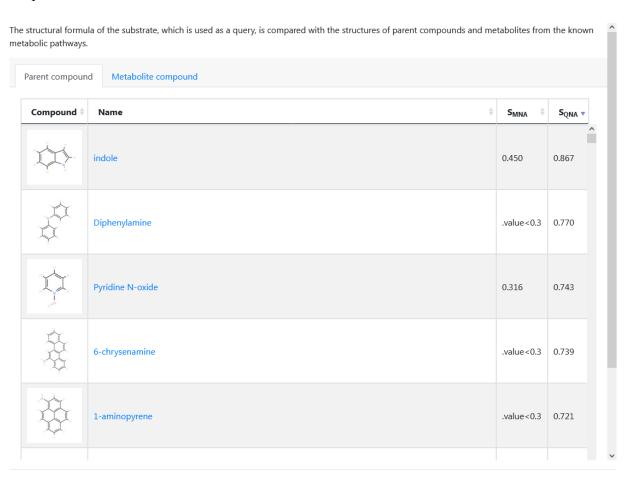


Таблица состоит из двух частей — «Parent compound» содержит только родительские соединения, то есть соединения, являющиеся вершиной в дереве метаболизма. — «Metabolite compound» содержит все остальные соединения — те, которые являются как конечными, так и промежуточными метаболитами.

Основная страница ресурса

Получив список названий соединений с известными схемами метаболизма, список похожих соединений или список соединений, наиболее вероятно проявляющих целевую активность пользователь, выбрав любое интересующее его соединение, попадает на

основную страницу ресурса, в левой части которого представлена сеть метаболизма (рис. 4, A), в правой части – агрегированный прогноз СБА для выбранного соединения (рис. 4, B), распределённый по категориям (рис. 4, C). Если биологическая активность предсказана для метаболита с бо́льшим значением Pa, чем для исходного соединения, то строка с прогнозом для данной активности окрашивается в коричневый цвет (при Pa > Pi для исходного соединения) или в серый (при Pa < Pi для исходного соединения). Можно посмотреть также прогноз для активности, выполненный для метаболитов данного соединения, нажав на символ «+», и, выбрав интересующую структуру (рис. 4, D), выделить её в схеме метаболических превращений.

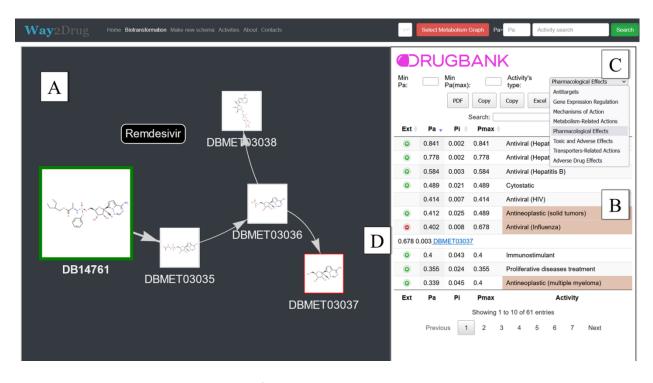


Рисунок 4. Интерфейс веб приложения MetaPASS 2024.

Прогноз СБА выполняется специализированной версией программы PASS – PASS Refined 2022. Для каждого вида биологической активности в СБА приводятся две величины: Pa (вероятность «быть активным») и Pi (вероятность «быть неактивным»), которые оценивают принадлежность прогнозируемого соединения к нечетким классам

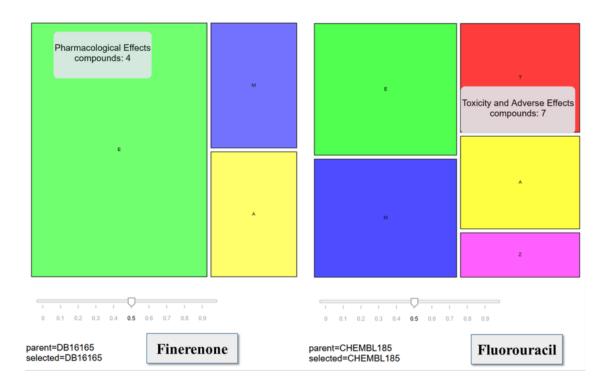
активных и неактивных соединений, соответственно. Далее определяется значение Pa_max , которое является максимальным значением Pa среди всех значений Pa, рассчитанных для исходного соединения и его метаболитов.

Таким образом, множество оценок биологической активности соединения и его метаболитов может быть распределено по вышеперечисленным категориям, что расширяет возможности анализа агрегированного СБА.

В MetaPASS есть агрегация прогноза СБА любого соединения и его метаболитов с использованием цветовых карт, реализованных с помощью JavaScript-библиотеки Data-Driven Documents, D3.js (https://d3js.org/), основу которой составляет JSON-объект, сформированный созданным нами PHP-скриптом.

Цветовые карты дают возможность отобразить количественные характеристики категорий активности в спрогнозированном СБА в виде соответствующих им прямоугольников (см. рис. 5). Площадь этих прямоугольников пропорциональна количеству соединений в схеме метаболизма, для которых была предсказана хотя бы одна активность из соответствующей категории. Цветовая кодировка категорий представлена в Таблице 1.

Таблица 1. Цветовая кодировка для категорий активностей.


Категория видов активности	Количество прогнозируемых видов активности в категории	Цвет
Фармакологические эффекты, Е	1251	00ff00
Молекулярные механизмы действия, М	1551	0000ff
Токсичность и нежелательные побочные эффекты, Т	21	ff0000
Нежелательные мишени, А	144	ffff00
Влияние на метаболизм ксенобиотиков, Z	48	ff00ff
Влияние на генную экспрессию, G	12	00ffff
Влияние на белки-транспортёры, С	51	a9a9a9

Интенсивность окраски прямоугольников пропорциональна среднему значению разности Pa-Pi в соответствующей категории СБА. Если конкретная активность была предсказана для нескольких структур, то перед усреднением берется максимальное значение Pa-Pi по этой активности. Например, в категории A с порогом Pa-Pi>0 было предсказано две активности: A1 и A2. При этом A1 была предсказана для структур X1 и X2, с Pa-Pi, равными 0,3 и 0,5, соответственно. Активность A2 была предсказана для одного соединения с Pa-Pi, равным 0,5. При расчете сначала берется максимум по A1, который равен 0,5, а затем проводится усреднение по A1 и A2. Итоговая оценка, 0,5, используется как мера интенсивности окраски прямоугольника, соответствующего категории A.

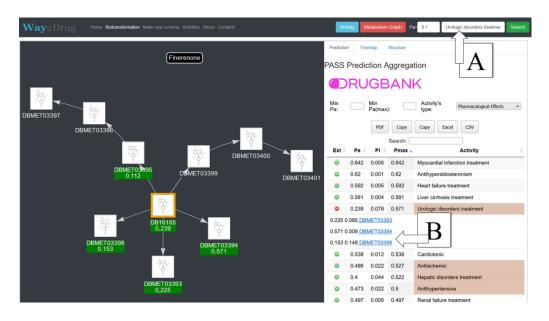
Цветовые карты могут быть построены как для исходного соединения (для всей схемы метаболических превращений) так и для любого выбранного метаболита (с учетом его возможных метаболических превращений), что позволяет увидеть изменения СБА в ходе метаболизма.

На рисунке 5 представлен пример цветовой карты СБА для двух соединений: Финеренона (антагонист минералокортикоидных рецепторов для лечения хронической болезни почек, связанной с диабетом 2 тип) и Фторурацила (противоопухолевый препарат). Для обоих соединений в MetaPASS содержатся схемы метаболизма, включающие девять метаболитов. При этом цветовые карты при одном пороге (*Pa-Pi* >0.5) существенно отличаются (см. рис. 5). Для Финеренона у всех соединений из метаболической сети в спрогнозированном СБА не выявлено активностей, связанных с токсичностью. У Фторурацила, напротив, таких метаболитов значительное количество, что согласуется с литературными данными, в которых изучается роль метаболитов в различных видах токсичности Фторурацила.

Таким образом, цветовая карта СБА позволяет провести предварительную оценку безопасности исследуемых лекарственных средств.

Рисунок 5. Общий вид цветовой карты, отображающей спектр биологической активности Финеренона и Фторурацила с учетом метаболитов при пороге Pa - Pi > 0,5

Используя ползунок (под картой, см. рис. 5), пользователь может регулировать отображение на карте результатов прогноза по значению Pa-Pi, при этом карта динамически перестраивается. Также возможно сохранить результаты прогноза в формате *.tab по отдельной категории активностей, нажав на соответствующую область. Например, в Таблице 2 представлены результаты прогноза фармакологических эффектов для Финеренона при выбранном пороге Pa-Pi>0,5.


Таблица 2. Прогноз СБА в категории «Фармакологический эффект» для Финеренона при пороге Pa - Pi > 0,5.

Pa	Pi	Activity	Drug_name	Pa-Pi	Category
0,642 0,00	0.005	Myocardial infarction	DB16165 0,0	0,637	Pharmacological Effects
	0,003	treatment		0,037	
0,62 0,001	Antihyperaldosteronis	DB16165	0,619	Pharmacological Effects	
	0,001	m	DB10103 0,019	0,019	Filarifiacological Effects
0,592	0,005	Heart failure treatment	DB16165	0,587	Pharmacological Effects
0,581 0,004	0.004	Liver cirrhosis	DB16165	0,577	Pharmacological Effects
	0,004	treatment	DB10103	0,377	Filatiliacological Effects
0,538	0,012	Cardiotonic	DB16165	0,526	Pharmacological Effects
0,629	0,005	Myocardial infarction	DBMET03393	0,624	Pharmacological Effects

		treatment			
0,57	0,006	Heart failure treatment	DBMET03393	0,564	Pharmacological Effects
0,559	0,004	Liver cirrhosis treatment	DBMET03393	0,555	Pharmacological Effects
0,571	0,009	Urologic disorders treatment	DBMET03394	0,562	Pharmacological Effects
0,595	0,005	Myocardial infarction treatment	DBMET03398	0,59	Pharmacological Effects
0,556	0,007	Heart failure treatment	DBMET03398	0,549	Pharmacological Effects
0,527	0,017	Antiischemic	DBMET03398	0,51	Pharmacological Effects
0,522	0,019	Hepatic disorders treatment	DBMET03398	0,503	Pharmacological Effects

Как видно из приведенных в таблице 2 данных, активность «Urologic disorders treatment» с порогом Pa-Pi>0,5 прогнозируется только для одного метаболита, но не прогнозируется для исходного соединения, хотя Финеренон используется для лечения хронической болезни почек. В данном случае учет прогноза метаболитов позволил выявить целевую активность. Чтобы проанализировать прогноз данной активности у Финеренона и у всех его метаболитов из метаболической сети, нужно набрать «Urologic disorders treatment» в поле поиска в правом верхнем углу страницы (см. рис. 5, A) и выбрать порог для Pa (например, Pa>0,1, как на рис.5).

После нажатия кнопки «Search» рядом со структурами в сети метаболизма появятся зеленые прямоугольники со значениями Ра, удовлетворяющими выбранному порогу. Также можно посмотреть раскрывающийся список рядом с данной активностью в спрогнозированном СБА (см. рис. 4, В) и выбрать интересующую структуру, которая «подсветится» (появится красная рамка вокруг изображения) на сети метаболизма (см. рис. 4, С).

Рисунок 6. Интерфейс MetaPASS 2024. Сеть метаболизма и спектр биологической активности Финеренона.

Перепрофилирования разрешенных к медицинскому применению лекарственных средств

Для перепрофилирования разрешенных к медицинскому применению лекарственных средств в MetaPASS есть возможность анализа списка наиболее перспективных согласно прогнозу соединений. Нажав на кнопку «Activity», пользователь получает список названий биологической активности (рис 6, В), список значений *Pa-Pi* и идентифкаторов относящихся к ним структур исходных соединений (рис 6, С) и структур метаболитов (рис. 6, D). В верхнем правом углу есть строка поиска, позволяющая найти интересующую исследователя активность (рис 6, A). Например, введя «SARS» в строку поиска, можно увидеть результаты, приведенные в таблице 3.

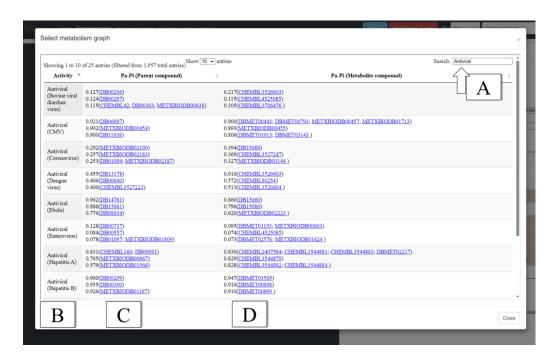


Рисунок 7. Окно поиска активностей.

Таблица 3. Идентификаторы соединений, для которых виды активности, связанные с SARS-CoV-2, прогнозируются с наибольшей вероятностью.

Activity	Pa-Pi (Parent compound)	Pa-Pi (Metabolite compound)
3C-Like protease (SARS coronavirus) inhibitor	0,206(DB08908) 0,178(DB01914; DB09419; DB11735) 0,176(DB00188)	0,457(METXBIODB00859) 0,392(DBMET03077) 0,352(DB03947)
Antiviral (SARS coronavirus)	0,292(METXBIODB02190) 0,257(METXBIODB02183) 0,253(DB01094; METXBIODB02187)	0,394(DB15686) 0,369(CHEMBL3527247) 0,327(METXBIODB03144)
Papain-like protease (SARS coronavirus) inhibitor	0,431(METXBIODB02568; METXBIODB02799) 0,409(METXBIODB00855) 0,392(DB01012)	0,576(METXBIODB03144) 0,524(DB12148) 0,416(DBMET01841)

Для активности «Antiviral (SARS coronavirus)» в таблице присутствуют идентификаторы следующих исходных соединений: Нарингенин (МЕТХВІООВ02190), 7-гидроксифлаванон (МЕТХВІООВ02183), Гесперетин (DB01094, МЕТХВІООВ02187) и идентификаторы метаболитов следующих соединений: Ремдесивир (DB15686), Амиодарон (СНЕМВL3527247), Кверцитрин (МЕТХВІООВ03144).

Кроме Ремдесивира, остальные соединения отсутствуют в обучающей выборке PASS Refined 2022, как обладающие активностью «Antiviral (SARS coronavirus)». Тем не менее, Нарингенин, Гесперетин, Амиодарон, согласно литературе, могут быть рассмотрены как потенциальные препараты для терапии COVID-19. Кверцитрин под действием кишечной микробиоты может быть превращён в Кверцитин, который, в свою очередь, исследуется в качестве возможного средства для лечения COVID-19