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Increasing application of AI/ML Methods in 
the Drug Discovery Space…

RSC Med. Chem.,2025,16, 149, The physics-AI dialogue in drug design

• With the first solved x-ray crystal
structure (hemoglobin 1960)-structure based 
drug design was born.

• The red curve shows the growing
role of molecular dynamics (i.e. physics based 
computational methods) in drug discovery

• The blue shows the growth of AI/ML
computational methods basically now 
reaching comparable usage as  physics based 
(molecular dynamics) methods



Big Pharma Collaborations and Data Pooling: 
OpenFold3 and TuneLab
• Astex Pharmaceuticals, Bristol Myers Squibb and Takeda have agreed to pool data to support work on an 

artificial intelligence model, joining AbbVie and Johnson & Johnson to contribute to the Federated 
OpenFold3 Initiative, supporting the Columbia University lab of Mohammed AlQuraishi, Ph.D., developing 
OpenFold3.

• Biopharma companies are collectively sitting on a vast trove of data. Pooling resources to build a bigger, 
more diverse data set could theoretically yield drug discovery models that are beyond what any one 
company could build in isolation.

• DeepMind’s AI spinout Isomorphic announced two drug discovery deals, with Eli Lilly and Novartis.

• TuneLab is a collaborative platform created to offer access to AI/ML tools leveraging Lilly’s own drug 
discovery models. Lilly TuneLab: Our AI/ML models at your fingertips https://tunelab.lilly.com/

• Google to Launch Open AI Models for Drug Discovery-TxGemma. TxGemma understands the structures of 
therapeutic entities, -small molecules, and proteins. Researchers can ask TX Gemma to help predict the 
properties of potential new therapeutics. https://developers.googleblog.com/en/introducing-txgemma-
open-models-improving-therapeutics-development/

https://www.insideprecisionmedicine.com/topics/precision-medicine/google-to-launch-open-ai-models-for-drug-discovery/

https://www.fiercebiotech.com/biotech/bms-and-takeda-dive-ai-data-pool-joining-peers-collaborative-push-unfold-future?utm_medium=email&utm_source=nl&utm_campaign=LS-NL-
FierceBiotech&oly_enc_id=1016C9521889B3V



Impact of AI/ML on Drug Discovery

• The Impact of ML on drug discovery has been significant in the past 
several years

• AlphaFold3 , RF diffusion methods, graphical neural networks and 
generative AI techniques have impacted every stage of the drug 
discovery process- target identification, hit finding and lead optimization

• In addition to big pharma, several companies which specifically focus on 
developing AI/ML methods across the entire drug discovery process have 
arisen (e.g. Recursion, Insilico Medicine, Insitro, Atomwise) 

• However, some claims regarding AI/ML methods and their applications 
are exaggerated, and there are some caveats regarding these new 
methods and their applications.



Where have ML algorithms had a significant 
impact in early drug discovery?
• Predicting Properties ; ADMET (absorption, distribution, metabolism, 

toxicity) properties
• Hit identification (database searching methods) small molecule 

ligand/chemical identification-neural networks, generative chemistry; AI 
enabled vHTS

• Target Identification (sequence LLM methods) and mechanism of action- 
Target/Protein Modeling and Structure Prediction; OpenFold, AlphaFold2,3, 
Boltz-1

• Docking and Co-Folding (AlphaFold3, Boltz-2)
• Drug Design and Optimization (including macromolecules and new 

molecular entities)
• ML and deep learning (DL) active and reinforced learning, are enhancing 

binding affinity prediction (FEP)



How are ML techniques having real and significant 
impact in the drug discovery space?

• How much significant improvement in identifying new chemical entities 
and exploring chemical space more efficiently with greater diversity? 

• Machine Learning methods have impacted representation of small 
molecules, virtual high throughput screens, docking/ co-folding 
“AlphaFold3” 

• How can AI/ML methods complement physics-based methods like absolute 
and relative free energy perturbation methods, MMGBSA, and molecular 
dynamics studies?

• Active learning methods, such as active learning FEP combine QSAR and 
FEP learning workflows; augmenting AI in structure-based drug design by 
feeding back scoring in AI workflows and data imputation.

• But…what is the success of these AI discovered molecules down the road in 
clinical trials?



Why ML Methods are of interest for drug 
discovery?

• Bring Down Costs…
• $2.3 billion average R and D cost to develop drug 

from discovery to product…(2) 
• Time…

• New chemical entity small molecule drugs 
typically take 4-6 years to discover

• 10+ years  average time to bring a new drug to 
market (5)

(2) “Unleash AI’s potential: Measuring the return from pharmaceutical innovation – 14th edition,” 
Deloitte, April 2024 
• 5 “Research and Development in the Pharmaceutical Industry,” Congressional Budget Office, April 

2021

• AI discovered small molecule growing exponentially-
since 2015 (article in DDT) 75 molecules developed 
using ML methods have entered the clinic of which 67
were in clinical trials (2023 data)

MKP Jayatunga,Drug Discovery Today, 29, (6), June 2024, 104009



AI Drugs in Clinical Trials….so far-very small 
sample size…

Madura KP Jayatunga 1 , Margaret Ayers 1 , Lotte Bruens 2 , Dhruv Jayanth 3 , Christoph Meier, DDT 
https://doi.org/10.1016/j.drudis.2024.104009

• As of 2023 December, 24, AI-discovered molecules had 
completed Phase I trials, of which 21 were successful 

• This suggests a success rate of 80–90%, which is 
substantially higher than historical industry averages that 
range from 40% to 55– 65%.

•  In Phase II trials, AI-discovered molecules  drop in success 
…to 40%, 

• Phase II typically involves the proof of a biological or 
mechanistic concept; this might suggest that AI algorithms 
can identify disease-relevant targets and pathways but are 
less successful in some of the more subtle aspects of drug 
design.



Summary from a slide presented by Dr.
Christopher Southan



DSP-1181; Serotonin 5-HT1a Receptor Agonist

• Advertised as first AI 
medicine…developed by 
Exscientia(Recursion) and Sumitomo 
Dainippon Pharma

• DSP-1181 development discontinued 
after Phase I, -the acceleration of 
discovery timelines by AI does not 
guarantee clinical success. 

• Selection of 5-HT1a as a target for OCD 
is not new and challenging 

• Discontinuation Reason: The trial was 
stopped because the drug was found 
to be "insufficiently novel" and too 
similar in structure to the existing 
antipsychotic drug haloperidol. 

DSP-1181 patent associated structure

https://www.science.org/content/blog-post/another-ai-generated-drug
https://www.cas.org/resources/cas-insights/ai-drug-discovery-assessing-the-first-ai-
designed-drug-candidates-to-go-into-human-clinical-trials
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EXS-21546, adenosine A2a receptor antagonist

• Exscientia(Recursion) and 
Evotec Phase 1 clinical trail of 
AI discovered drug EXS-
21546, adenosine A2a 
receptor antagonist 

• Once again, scaffold similar 
to FDA approved drugs 
(Janssen) reported in earlier 
patents

EXS21546 candidate 
discontinued

https://www.cas.org/resources/cas-insights/ai-drug-discovery-assessing-the-first-ai-designed-drug-
candidates-to-go-into-human-clinical-trials
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DSP-0038 dual 5-HT1a receptor agonist and 
5-HT2a receptor antagonist
• For Alzheimer's psychosis:Phase I study 

between Exscientia (Recursion) and 
Sumitomo Dainippon Pharma.

• Shape is shared with other FDA approved 
antipsychotics and serotonin receptor 
agonists/antagonist

• Designing dual selective active molecules 
is a challenge with traditional drug 
discovery methods.

• However, there is still the challenge of 
novel scaffold discovery

• As of late 2025, DSP-0038 is in Phase 1 
clinical trials. 

https://www.sumitomo-pharma.com/rd/pipeline_new-medicine/pipeline.html

DPS-0038 Patent



ML patented molecules(right) lack of novelty

The Atomwise AIMS Program. AI is a viable alternative to high throughput screening: a 318-target 
study. Sci Rep 14, 7526 (2024). https://doi.org/10.1038/s41598-024-54655-z

AI Patents



Rentosertib (INS018-055), the first AI-generated 
drug to enter Phase 2a trials (Insilico Medicine)

• Few novel AI designed drugs have advanced in clinical trials (i.e. to Phase 2, 
3 trials)

• Rentosertib (formerly ISM001-055), a first-in-class AI-generated small-
molecule inhibitor of Traf2- and Nck-interacting kinase (TNIK) , a first-in-
class target , identified as a critical regulator of  idiopathic pulmonary 
fibrosis (IPF) discovered using a generative AI approach

• INS018-055 small molecule inhibitor designed to treat idiopathic 
pulmonary fibrosis. 

• The biological target(TNIK) and INS018-055 were identified using Insilico 
Medicine commercial AI platforms, PandaOmics (target identification) and 
Chemistry42 (molecule generation) to generate inhibitor candidates

A generative AI-discovered TNIK inhibitor for idiopathic pulmonary fibrosis: a randomized phase 
2a trial Nature Medicine volume 31, pages2602–2610 (2025) (Insilico Medicine)

https://www.nature.com/nm


Chemistry 42 General Features

• Ligand based and structure-based design

• Ligand base design input: Input 2D or 3D ligand input as sdf , SMILES or sketcher 
(pharmacophore can be included)

• Structure based design: structure of a protein target, either in the apo format or 
in complex with a ligand, must be uploaded to the platform as a prepared pdb 
file. One can pick either the pocket around the ligand (ligand binding site) or 
select one from the set of alternative pockets indicated by the Pocket Scanner 
Module. Anchor points- 3D privileged scaffold

•  The Chemistry42 platform is commercially available to the public 
(https://chemistry42.com). Parts of the platform, such as the GENTRL algorithm, 
(generative tensorial reinforcement learning )are available 
online https://github.com/insilicomedicine/GENTRL. Data for training the models 
is constructed from publicly available sources such as ChEMBL 
(https://www.ebi.ac.uk/chembl/). 

https://chemistry42.com/
https://github.com/insilicomedicine/GENTRL
https://www.ebi.ac.uk/chembl/


Chemistry 42 Platform
(Commercial- Insilico Medicine)
• Begin with data and properties of structures

• Platform contains 40+ generative model functions which are run in parallel to 
generate novel structures

• including generative autoencoders, generative adversarial networks, flow-based 
approaches, evolutionary algorithms, language models, and others. These models 
employ different molecular representations ─ string-based, graph-based, and 3D-
based.

• Filter generated structures
• Medicinal chemistry filters include PAINS, reactivity, toxic unstable functional groups, 

synthetic accessibility, unique molecular descriptor that scores novelty in terms of 
sp3 complexity, drug-likeness, similarity to reference data set (novelty), how 
structurally diverse the generated molecules are based on the number of generated 
chemotypes following clustering. Privileged Fragments (PFs) which define structural 
motifs that contribute to the activity of a target or target class.

• Special 3D filters- ConfGen produces conformational ensemble for each structure,3D 
descriptors, pharmacophore module to match hypothesis, shape similarity to 
reference molecule.

• Pocket Module approximate binding affinity

• Multiple sets of reward and scoring modules (2D and 3D) assess generated 
structure properties dynamically

• Generated structure scores are then fed back into the models- learning phase

• All Generated structures are analyzed  and ranked based on predicted 
properties, diversity and synthetic accessibility

J. Chem. Inf. Model. 2023, 63, 3, 695–701



INS018-055 Traf2- and Nck-interacting kinase 
(TNIK) Inhibitor
• To identify TNIK inhibitors, available crystal 

structures of the TNIK kinase domain were 
used in the Chemistry42 structure-based 
drug-design AI workflow

• The ATP-binding site was selected as a 
pocket for compound generation

• AI-driven platform was configured to 
produce small-molecule structures 
capable of forming hydrogen bonds with 
the Cys108-NH of the TNIK hinge region. 

• Additional hydrophobic pharmacophore 
was applied to prioritize structures 
bearing hydrophobic functions to deeply 
occupy the back cavity formed by Met105, 
Leu73, Leu103, Ala52 and Val104.

Zuccotto, F., Ardini, E., Casale, E. & Angiolini, M. Through the ‘gatekeeper door’: exploiting the active kinase conformation. J. 
Med. Chem. 53, 2681–2694 (2010).

M105

A52

C108

L73

L103

V104

PDB: 8ZML



Rentosertib (INS018-055) (green) binding 
mode compared with previous TNIK inhibitors

Crystal structure of the NCB-0846 (cyan)-bound TNIK kinase domain (PDB 5D7A) 
aligned with the predicted binding mode of INS018_055 (green). b, Crystal structure 
of the compound 9 (cyan)-bound TNIK kinase domain (PDB 5AX9) aligned with the 
predicted binding mode of INS018_055 (green).

Ren, F., Aliper, A., Chen, J. et al. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nat Biotechnol 43, 63–75 (2025). 
https://doi.org/10.1038/s41587-024-02143-0
Fabio Zuccotto, J. Med. Chem. 2010, 53, 7, 2681–2694

• AI-driven platform small-molecule 
structure results capable of 
forming hydrogen bonds with the 
Cys108-NH of the TNIK hinge 
region. 

• Targeting less-conserved adjacent 
allosteric pockets (such as a 
hydrophobic back cavity close to 
the gatekeeper residue) in 
addition to the active site can 
achieve better selectivity of the 
lead compounds. 

https://doi.org/10.2210/pdb5D7A/pdb
https://doi.org/10.2210/pdb5AX9/pdb
https://doi.org/10.1038/s41587-024-02143-0
https://doi.org/10.1038/s41587-024-02143-0
https://doi.org/10.1038/s41587-024-02143-0
https://doi.org/10.1038/s41587-024-02143-0
https://doi.org/10.1038/s41587-024-02143-0
https://doi.org/10.1038/s41587-024-02143-0
https://doi.org/10.1038/s41587-024-02143-0


Novelty of Rentosertib (INS018-055) Inhibitor



Atomwise-virtual high throughput screen

• Virtual high throughput AtomNet platform is a graph convolutional neural 
network architecture with atoms represented as vertices and pairwise distance 
dependent edges representing atom proximities

• They used their platform to identify novel bioactive scaffold hits for a diverse set 
of 235 out of 318 targets without any previously known x-ray structures or 
binding ligands

• Their molecular hits were novel and not similar to ones found by conventional 
HTS using standard libraries

• Several of their hits were first in class novel scaffold binders for their targets

• They identified hits for challenging targets- allosteric binds and protein-protein 
interactions

• Their ML virtual screen is multilayered and does consider a physics-based docking 
score (AutoDock Vina)



Atomwise : Novelty of Hits

The Atomwise AIMS Program. AI is a viable alternative to high throughput screening: a 318-target study. Sci Rep 14, 7526 (2024). https://doi.org/10.1038/s41598-024-54655-z



Atomwise : performance diverse targets; with 
and without structural information



ML and Target (protein structure prediction)

• After many years of CASP Structure Prediction Competitions, Threading and 
Homology Modeling- First AlphaFold Model at CASP13

• AlphaFold developers John Jumper and Demis Hassabis shared 2024 Nobel Prize 
Chemistry

• AlphaFold Protein Structure Database (https://alphafold.ebi.ac.uk/ )

• AlphaFold relies on multiple sequence alignments to find evolutionary 
relationships to predict inter residue contacts-original AlphaFold used a statistical 
model; 

• AlphaFold2 uses transformer architecture to integrate MSA and structural 
template information; 

• AlphaFold3 uses multiple sequence alignment to find close residue close pairs; 
other similar models- ESMFold

• AlphaFold3 and RoseTTAFoldAll Atom use diffusion models



AlphaFold 3 (AF3) and RoseTTAFold All-Atom 
(RFAA)
• Co-Folding: incorporating interactions with proteins, nucleic acids, and small molecules 

within a single predictive framework

• Diffusion-based architecture, AF3 removed stereochemical loss, amino-acid specific 
frames, and special handling of bonding patterns; de-emphasized protein evolutionary 
data 

• These changes allowed AF3 to train on nearly all structural data which extended its 
modeling capabilities to new tasks, such as protein-ligand and protein-nucleic acid 
complexes.

• AF3 and RFAA Performance: In blind docking of small molecules to proteins with the 
PoseBusterV2 dataset, AF3 achieved an accuracy of around 81% for predicting the native 
pose within 2Å RMSD

• Chai-1 and Boltz-1 , AlphaFold3 comparable accuracy
bioRxiv preprint doi: https://doi.org/10.1101/2024.10.10.615955

Buttenschoen, M., Morris, G. M. & Deane, C. M. Posebusters: Ai-based docking methods fail to generate physically valid poses or generalise to novel 
sequences. Chem. Sci. 15, 3130–3139 (2024).

https://doi.org/10.1101/2024.10.10.615955


However, AF3 Issues…
• Limitations of AF3 with respect to stereochemistry, 

hallucinations, dynamics and accuracy for certain 
targets.

• Stereochemistry, two main classes of violations. 
The first is that the model outputs do not always 
respect chirality (Fig. 5b), despite the model 
receiving reference structures with correct chirality 
as input features

• Second class of stereochemical violations is a 
tendency of the model to occasionally produce 
overlap ping (clashing) atoms in the predictions. 
This sometimes manifests as extreme violations in 
homomers in which entire chains have been 
observed to overlap

• Diffusion-based AF3 model introduces the 
challenge of spurious structural order 
(hallucinations) in disordered regions

• Dynamics- conformational states not captured 
correctly…example, E3 ubiquitin ligases natively 
adopt an open conformation in an apo state and 
have been observed only in a closed state when 
bound to ligands, but AF3 exclusively predicts the 
closed state for both holo and apo systems

Nature, (630), 2024,Accurate structure prediction of biomolecular interactions with AlphaFold 3 
https://doi.org/10.1038/s41586-024-07487-w



Do Deep Learning Models for Co-Folding Learn the 
Physics of Protein-Ligand Interactions: AF3, RoseTTAFold 
AllAtom, Boltz-1 and Chai-1

• Bias toward preserving the original binding geometry, even when 
significant structural, chemical, and physical changes were introduced 
(mutated residues in binding pocket)- Why? Most of the co-folding 
models rely heavily on multiple sequence alignment and 3D template-
based input features to make predictions

• When removing the binding site residues, or small mutations, the 
sequence alignment and template search will return exactly the same 
results as before, as they are still the closest related sequences and 
structures in the data set. Therefore, the MSA and template features 
that the network accepts as input are identical despite the mutations, 
leading the model to make a similar prediction

• Validation by a physics-based methods, molecular dynamics 
simulations, or inclusion of some experimental data (i.e. mass spec or 
NMR) would improve predictions



Can ML/AI predicted Structures be used for 
FEP? FEP and Boltz-2

• Boltz predicted protein-ligand complexes were used in ABFE to 
initialize simulations and could accurately estimate the free 
energy of binding (∆G), (provided that some care was taken 
when choosing which structure prediction is taken forward for 
use in MD simulations). 

• A  pipeline that prepares Boltz predicted structures for MD by 
automating the removal of common defects in the predicted 
structures such as overlapping atoms , clashes, and incorrect 
ligand stereochemistry.

• The goal of Boltz-ABFE is to accurately predict the protein-ligand 
binding affinity from the compound’s SMILES string and protein 
sequence information alone

• Boltz-ABFE, a pipeline corrects defects of predicted structures 
and allows to perform 15 free energy simulations without 
requiring experimentally-determined protein-ligand complex 
structures

 arXiv:2508.19385v1 https://doi.org/10.48550/arXiv.2508.19385



Boltz-ABFE 4 proteins from the FEP+ benchmark: 
CDK2, TYK2, JNK1, and P38

• Prediction Methods: 
• Boltz-2 without redocking (labeled ”Boltz-2” in the Figure), GREEN
• Boltz-1 with redocking using POSIT (”Boltz-1+P”)  DARK BLUE
• Boltz-2 with redocking using POSIT (”Boltz-2+P”) PURPLE
• Boltz-2 Affinity module (”Boltz-2-A”) RED

• Results were compared against simulations starting with crystal structures 
with POSIT re-docking (ORANGE). 

• ABFE simulations starting from the crystal structure achieved the most 
consistent results over all the targets when considering all of the success 
metrics (RSME, MUE, R2 and Kendall’s τ ). 

• The best results for TYK2 start from Boltz1+P predicted structures.

• The ABFE results initiated from any of the Boltz predicted structures 
achieved satisfactory results with MUE < 1 kcal/mol on average. (MUE= 
mean unsigned error)

• The poorer performance of Boltz-2 can be attributed to the TYK2 protein, 
where the predictions have MUE′ s > 1 kcal/mol. the predicted TYK2 
structures, we observed that Boltz-2 flipped a side-chain in the binding 
pocket compared to Boltz-1, 

• Boltz-2 Affinity module also performs well on this dataset, yielding 
correlation metrics that are slightly better than those from the Boltz-1+P 
ABFE simulations. 



PoseBuster Docking Challenge: ML vs Physics based methods…

• PoseBuster’s checks the quality of docked ligand structures using the RDKit 
Distance Geometry Module rules evaluating stereochemistry and inter and 
intramolecular measurements- bond lengths, planarity of aromatics and atom 
clashes. 

• In the evaluation and comparison of five deep learning “AI” docking methods- 
DeepDock, DiffDock, EquiBind, TankBind and Uni-Mol, compared with traditional 
physics-based docking methods -Auto Dock Vina and CCDC Gold, the physics-
based docking methods limited the degrees of movement in the ligand to only 
the permissible rotatable bonds in the ligand and included penalties for protein 
and ligand clashes. 

• The conclusion reached by this published study was that “no deep learning-
based method yet outperforms classical docking tools”. And “molecular 
mechanics force fields contain docking-relevant physics missing from deep 
learning methods”

PoseBusters: AI-based docking methods fail to generate physically valid poses or generalise to novel sequences† 
Martin Buttenschoen, Garrett M. Morris and Charlotte M. Deane *: Chem. Sci., 2024, 15, 3130



In summary: ML cannot extrapolate if data is 
not represented in the training set…
• The analyses and predictions made by AI and ML software can only be 

as good as the data sets that support them.

• Even small, biologically plausible perturbations can result in 
significant discrepancies in predicted structures, highlighting 
vulnerabilities in these models. –like the residue mutations in the 
binding site. 

• ML designed molecules are more successful in Phase I than Phase II
• ML success could be explained by the fact that test data sets already have 

optimized ADME and safety profiles and so using these types of data sets for 
training makes Phase I outcomes more successful, but this does not transfer 
to Phase II and beyond…



In Summary: Deep Learning Model 
Problems…
• Deep learning models rely in data driven patterns

• Studies* have shown that the performance of these deep learning methods 
predominantly comes from their pocket finding ability and not an ability to 
resolve detailed molecular interactions. 

• Fundamental principles of physical interactions- hydrogen bonding, electrostatic 
forces and steric constraints –interactions that govern stability and specificity in 
molecular interactions and are important for predicting biologically and 
functionally relevant conformation are not considered- ability to model physical 
interactions is crucial for drug discovery

• Deep learning models can not generalize beyond their training data set and can 
overfit to statistical correlation and can lead to incorrect conclusions regarding 
biological activity

• Researchers have shown that co-folding models largely memorize ligands from 
their training data and do not generalize well to unseen ligand structures+.

*Yu, Y., Lu, S., Gao, Z., Zheng, H. & Ke, G. Do deep learning models really outperform traditional approaches in molecular docking? International Conference on Learned Representations, MLDD Workshop (2023).
Masters, M., Mahmoud, A. H. & Lill, M. A. Pocketnet: ligand-guided pocket prediction for blind docking. International Conference on Learned Representations, MLDD Workshop (2023).
+Škrinjar, P., Eberhardt, J., Durairaj, J. & Schwede, T. Have protein-ligand co-folding methods moved beyond memorisation? bioRxiv, https://doi.org/10.1101/2025.02.03.636309 (2025)

https://doi.org/10.1101/2025.02.03.636309


FINAL CONCLUSIONS

“Our findings underscore the models’ (i.e. AF2, RF) limitations in generalizing 
effectively across diverse protein-ligand structures and highlight the necessity of 
integrating robust physical and chemical priors in the development of such 
predictive tools. The results advocate a measured reliance on deep-learning-based 
models for critical applications in drug discovery and protein engineering, where a 
deep understanding of the underlying physical and chemical properties is crucial.” 

•  Investigating whether deep learning models for co-folding learn the physics 
of protein-ligand interactions, Matthew R. Masters, Amr H. Mahmoud 
Markus A. Lill Nature Communications volume 16, Article 
number:8854(2025) 

AI Does Not Make It Easy

IN THE PIPELINE:DRUG DEVELOPMENT , 18 OCT 2024, BY DEREK LOWE
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