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Increasing application of Al/ML Methods in

the Drug Discovery Space...
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Fig. 1 The number of publications mentioning drug design or drug discovery (DD} has continually increased since the 1960s (violet curve). The
discovery of the structure of hemoglobin in 1960 opened the door to structure-based drug design. In the 1990s, the number of DD publications
that mentioned MD simulations (red curve) or Al tools (blue curve) started to grow steadily. Since the late 2010s, the gap of DD publications based
on Al methods versus MD simulations has narrowed.

RSC Med. Chem.,2025,16, 149, The physics-Al dialogue in drug design

* With the first solved x-ray crystal
structure (hemoglobin 1960)-structure based
drug design was born.

 The red curve shows the growing
role of molecular dynamics (i.e. physics based
computational methods) in drug discovery

* The blue shows the growth of Al/ML
computational methods basically now
reaching comparable usage as physics based
(molecular dynamics) methods



Big Pharma Collaborations and Data Pooling:
OpenFold3 and Tunelab

Astex Pharmaceuticals, Bristol Myers Squibb and Takeda have agreed to pool data to support work on an

artificial intelligence model, joining AbbVie and Johnson & Johnson to contribute to the Federated

8pen|l§olg§ Initiative, supporting the Columbia University lab of Mohammed AlQuraishi, Ph.D., developing
penFold3.

Biopharma companies are collectively sitting on a vast trove of data. Pooling resources to build a bigger,
more diverse data set could theoretically yield drug discovery models that are beyond what any one
company could build in isolation.

DeepMind’s Al spinout Isomorphic announced two drug discovery deals, with Eli Lilly and Novartis.

Tunelab is a collaborative platform created to offer access to Al/ML tools leveraging Lilly’s own drug
discovery models. Lilly TunelLab: Our Al/ML models at your fingertips https://tunelab.lilly.com/

Google to Launch Open Al Models for Drug Discovery-TxGemma. TxGemma understands the structures of
therapeutic entities, -small molecules, and proteins. Researchers can ask TX Gemma to help predict the
properties of potential new therapeutics. https://developers.googleblog.com/en/introducing-txgemma-
open-models-improving-therapeutics-development/

https://www.insideprecisionmedicine.com/topics/precision-medicine/google-to-launch-open-ai-models-for-drug-discovery/

https://www.fiercebiotech.com/biotech/bms-and-takeda-dive-ai-data-pool-joining-peers-collaborative-push-unfold-future?utm_medium=email&utm_source=nl&utm_campaign=LS-NL-
FierceBiotech&oly_enc_id=1016C9521889B3V



Impact of Al/ML on Drug Discovery

* The Impact of ML on drug discovery has been significant in the past
several years

* AlphaFold3, RF diffusion methods, graphical neural networks and
generative Al techniques have impacted every stage of the drug
discovery process- target identification, hit finding and lead optimization

* |n addition to big pharma, several companies which specifically focus on
developing Al/ML methods across the entire drug discovery process have
arisen (e.g. Recursion, Insilico Medicine, Insitro, Atomwise)

* However, some claims regarding Al/ML methods and their applications
are exaggerated, and there are some caveats regarding these new
methods and their applications.



Where have ML algorithms had a significant
impact in early drug discovery?

* Predicting Properties ; ADMET (absorption, distribution, metabolism,
toxicity) properties

* Hit identifica.tion_édataI;)ase_ searching methods) small molecule
ligand/chemical identification-neural networks, generative chemistry; Al
enabled VHTS

e Target |dentification ﬁsequence LLM methods) and mechanism of action-
Earlgetl/Protein Modeling and Structure Prediction; OpenFold, AlphaFold2,3,
oltz-

* Docking and Co-Folding (AlphaFold3, Boltz-2)

* Drug Design and Optimization (including macromolecules and new
molecular entities)

ML and deep learning (DL) active and reinforced learning, are enhancing
binding affinity prediction (FEP)



How are ML technigues having real and significant
impact in the drug discovery space?

* How much significant improvement in identifying new chemical entities
and exploring chemical space more efficiently with greater diversity?

* Machine Learning methods have impacted representation of small
molecules, virtual high throughput screens, docking/ co-folding
“AlphaFold3”

* How can Al/ML methods complement physics-based methods like absolute
and relative free energy perturbation methods, MMGBSA, and molecular
dynamics studies?

* Active learning methods, such as active learning FEP combine QSAR and
FEP learning workflows; augmenting Al in structure-based drug design by
feeding back scoring in Al workflows and data imputation.

e But...what is the success of these Al discovered molecules down the road in
clinical trials?



Why ML Methods are of interest for drug

discovery?
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MKP Jayatunga,Drug Discovery Today, 29, (6), June 2024, 104009

Launched
Il Phase lll clinical trial
Il Phase Il clinical trial
I Phase | clinical trial

Al-discovered targets
I Al-designed small molecules
I Al-discovered antibodies
I Al-discovered vaccines
I Al-repurposed molecules

Il Other

* Bring Down Costs...
» $2.3 billion average R and D cost to develop drug
from discovery to product-(2)
* Time...
* New chemical entity small molecule drugs
typically take 4-6 years to discover
10+ years average time to bring a new drug to
market (°)

(2) “Unleash Al's potential: Measuring the return from pharmaceutical innovation — 14th edition,”
Deloitte, April 2024
5 “Research and Development in the Pharmaceutical Industry,” Congressional Budget Office, April
2021

e Al discovered small molecule growing exponentially-
since 2015 (article in DDT) 75 molecules developed
using ML methods have entered the clinic of which 67
were in clinical trials (2023 data)



Al Drugs in Clinical Trials....so far-very small

sample size...
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(b)

Phase

Phase Il

As of 2023 December, 24, Al-discovered molecules had
completed Phase | trials, of which 21 were successful

This suggests a success rate of 80-90%, which is
substantially higher than historical industry averages that
range from 40% to 55— 65%.

In Phase Il trials, Al-discovered molecules drop in success
...to 40%,

Phase Il typically involves the proof of a biological or
mechanistic concept; this might suggest that Al algorithms
can identify disease-relevant targets and pathways but are
less successful in some of the more subtle aspects of drug
design.

Madura KP Jayatunga 1, Margaret Ayers 1, Lotte Bruens 2, Dhruv Jayanth 3, Christoph Meier, DDT

https://doi.org/10.1016/j.drudis.2024.104009



AIDDC pipelines 2024 snapshot
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DSP-1181; Serotonin 5-HT1a Receptor Agonist

DSP-1181 patent associated structure

US10800755
Claimed Molecules

Molecular
Shape

FDA-Approved Drugs
on Same Shape

* Advertised as first Al
medicine...developed by
Exscientia(Recursion) and Sumitomo
Dainippon Pharma

CAS RN 2244686-21-1

 DSP-1181 development discontinued Claim 1and 2
after Phase |, -the acceleration of -
discovery timelines by Al does not
guarantee clinical success.

* Selection of 5-HT1a as a target for OCD o -
is not new and challenging CAS RN 2244686-30-2
Claimiand3
* Discontinuation Reason: The trial was Example 8

stopped because the drug was found
to be "insufficiently novel” and too
similar in structure to the existing
antipsychotic drug haloperidol.

CAS RN 2244686-23-3
Claimiand 4

Example 11 __J

https://www.science.org/content/blog-post/another-ai-generated-drug
https://www.cas.org/resources/cas-insights/ai-drug-discovery-assessing-the-first-ai-
designed-drug-candidates-to-go-into-human-clinical-trials

Source: CAS analysis

Shape first reported in 1913
Populated by more than 150,000 molecules

CAS RD 52-86-8
Haloperidol
Haldol approved in 1967
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EXS-21546, adenosine A2a receptor antagonist

* Exscientia(Recursion) and

Evotec Phase 1 clinical trail of

Al discovered drug EXS-
21546, adenosine A2a
receptor antagonist

* Once again, scaffold similar
to FDA approved drugs
(Janssenfreported in earlier
patents

EXS21546 candidate
discontinued

https://www.cas.org/resources/cas-insights/ai-drug-discovery-assessing-the-first-ai-designed-drug-

Molecular
Shape

Number (Percentage) of WO2019233994
Exemplified Molecules on Same Shape

candidates-to-go-into-human-clinical-trials

Shape first reported in 1965
Populated by less than 2,000 molecules

Shape first reported in 1950
Populated by more than 10,000 molecules

Shape first reported in 1945
Populated by less than 1,000 molecules

Source: CAS analysis

33 (72%)

11 (24%)

2(4%)
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DSP-0038 dual 5-HT1a receptor agonist and
5-HT2a receptor antagonist

. ' ' ic- DPS-0038 Patent
For Alzheimer's psychosis:Phase | study lsmiias vt on v o

between Exscientia (Recursion) and
Sumitomo Dainippon Pharma.

e Shape is shared with other FDA approved CAS RN 200054489 e b AR ' o
antipsychotics and serotonin receptor - L B i
agonists/antagonist

. . . . AS RN 240054747 Shape first reported in 1979 AS RN 146939-27-7

* Designing dual selective active molecules ‘ Sce:m;;:z Populted vy s o 2000 el G‘ Sz.mfn:m
is a challenge with traditional drug
discovery methods.

* However, there is still the challenge of e aroors s e s eooret 202
novel scaffold discovery Eospy PRI

Source: CAS analysis

* As of late 2025, DSP-0038 is in Phase 1
clinical trials.

https://www.sumitomo-pharma.com/rd/pipeline_new-medicine/pipeline.html



ML patented molecules(right) lack of novelty

/ Al Patents ~

; COH&F N A2Ar-antagonist
&O ! — \ ) NH, p
() ®< | 4
N~
MALT1 QPCTL

Z

L\gpﬁ* ﬁ%p

Pairs of representative compounds extracted from Al patents (ri gh) and corresponding prior patents (left) for clinical-stage programs (CDK72=22, A2A
antagonist?22, MALT1252Z, QPCTL2222, YSp1192.191, and 3CLprol221%3%) The cal atoms b the chemical structu e highlighted in red

The Atomwise AIMS Program. Al is a viable alternative to high throughput screening: a 318-target
study. Sci Rep 14, 7526 (2024). https://doi.org/10.1038/s41598-024-54655-z



Rentosertib (INSO018-055), the first Al-generated
drug to enter Phase 2a trials (Insilico Medicine)

* Few novel Al designed drugs have advanced in clinical trials (i.e. to Phase 2,
3 trials)

* Rentosertib (formerly ISM001-055), a first-in-class Al-generated small-
molecule inhibitor of Traf2- and Nck-interacting kinase (TNIK) , a first-in-
class target, identified as a critical regulator of idiopathic pulmonary
fibrosis (IPF) discovered using a generative Al approach

* INSO018-055 small molecule inhibitor designed to treat idiopathic
pulmonary fibrosis.

* The biological target(TNIK) and INSO018-055 were identified using Insilico
Medicine commercial Al platforms, PandaOmics (target identification) and
Chemistry42 (molecule generation) to generate inhibitor candidates

A generative Al-discovered TNIK inhibitor for idiopathic pulmonary fibrosis: a randomized phase
2a trial Nature Medicine volume 31, pages2602—-2610 (2025) (Insilico Medicine)



https://www.nature.com/nm

Chemistry 42 General Features

* Ligand based and structure-based design

* Ligand base design input: Input 2D or 3D ligand input as sdf , SMILES or sketcher
(pharmacophore can be included)

 Structure based design: structure of a protein target, either in the apo format or
in complex with a ligand, must be uploaded to the platform as a prepared pdb
file. One can pick either the pocket around the ligand (Ii%and binding site) or
select one from the set of alternative pockets indicated by the Pocket Scanner
Module. Anchor points- 3D privileged scaffold

 The Chemistry42 platform is commercially available to the public
https://chemistry42.com). Parts of the platform, such as the GENTRL algorithm,
generative tensorial reinforcement learning )are available
online https://github.com/insilicomedicine/GENTRL. Data for training the models
is constructed from publicly available sources such as ChEMBL
(https://www.ebi.ac.uk/chembl/).



https://chemistry42.com/
https://github.com/insilicomedicine/GENTRL
https://www.ebi.ac.uk/chembl/

Chemistry 42 Platform

Commercial- Insi

* Begin with data and properties of structures

* Platform contains 40+ generative model functions which are run in parallel to
generate novel structures

includin%generative autoencoders, generative adversarial networks, flow-based

approaches, evolutionary algorithms, language models, and others. These models

gmpléay different molecular representations — string-based, graph-based, and 3D-
ased.

* Filter generated structures

Medicinal chemistry filters include PAINS, reactivity, toxic unstable functional groups,
synthetic accessibility, unique molecular descriptor that scores novelty in terms of
sp3 complexity, drug-likeness, similarity to reference data set (novelty), how
structurally diverse the generated molecules are based on the number of generated
chemotypes following clustering. Privileged Fragments (PFs) which define structural
motifs that contribute to the activity of a target or target class.

Special 3D filters- ConfGen produces conformational ensemble for each structure,3D
descriptors, pharmacophore module to match hypothesis, shape similarity to
reference molecule.

Pocket Module approximate binding affinity

* Multiple sets of reward and scoring modules (2D and 3D) assess generated
structure properties dynamically

* Generated structure scores are then fed back into the models- learning phase

* All Generated structures are analyzed and ranked based on predicted
properties, diversity and synthetic accessibility

J. Chem. Inf. Model. 2023, 63, 3, 695-701

ico Medicine

LBDD and SBDD General Overview

% 40+ models
working simultaneously for 72 hours +

Input

« Ligand 2D or 3D structure (sdf or mol)
« Target Crystal/Co-crystal (target, PDB)
« Target name or class

« Desired properties

Each model’s performance is
evaluated, recorded, and benchmarked
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INSO18-055 Traf2- and Nck-interacting kinase
(TNIK) Inhibitor 0 ——

* To identify TNIK inhibitors, available crystal
structures of the TNIK kinase domain were
used in the Chemistry42 structure-based
drug-design Al workflow

* The ATP-binding site was selected as a
pocket for compound generation

e Al-driven platform was configured to
produce small-molecule structures
capable of forming hydrogen bonds with
the Cys108-NH of the TNIK hinge region.

* Additional hydrophobic pharmacophore
was applied to prioritize structures
bearing hydrophobic functions to deeply
occupy the back cavity formed by Met105,
Leu73, Leul03, Ala52 and Val104.

Zuccotto, F., Ardini, E., Casale, E. & Angiolini, M. Through the ‘gatekeeper door’: exploiting the active kinase conformation. J.
Med. Chem. 53, 2681-2694 (2010).



Rentosertib (INSO18-055) (green) binding
mode compared with previous TNIK inhibitors

a b

Met
gatekeeper

Al-driven platform small-molecule
structure results capable of
forming hydrogen bonds with the
Cys108-NH of the TNIK hinge
region.

W

) _

_ ,. * Targeting less-conserved adjacent
A549 allosteric pockets (such as a
hydrophobic back cavity close to

Crystal structure of the NCB-0846 (cyan)-bound TNIK kinase domain (PDB 5D7A) the gatekeeper residue) in

aligned with the predicted binding mode of INS018_055 (green). b, Crystal structure addition to the active site can

of the compound 9 (cyan)-bound TNIK kinase domain (PDB 5AX9) aligned with the achieve better selectivity of the

predicted binding mode of INSO18 055 (green). lead compounds.

Ren, F., Aliper, A., Chen, J. et al. A small-molecule TNIK inhibitor targets fibrosis in preclinical and clinical models. Nat Biotechnol 43, 63—75 (2025).
https://doi.org/10.1038/s41587-024-02143-0
Fabio Zuccotto, J. Med. Chem. 2010, 53, 7, 2681-2694



https://doi.org/10.2210/pdb5D7A/pdb
https://doi.org/10.2210/pdb5AX9/pdb
https://doi.org/10.1038/s41587-024-02143-0
https://doi.org/10.1038/s41587-024-02143-0
https://doi.org/10.1038/s41587-024-02143-0
https://doi.org/10.1038/s41587-024-02143-0
https://doi.org/10.1038/s41587-024-02143-0
https://doi.org/10.1038/s41587-024-02143-0
https://doi.org/10.1038/s41587-024-02143-0

Novelty of Rentosertib (INSO18-055) Inhibitor

Table S3-2. Tanimoto similarity scores between INS018 055 and known TNIK inhibitors.

Molecule SMILES Tanimoto
Name Similarity Score
Compound | O=Clc2cee(-c3enc4[nH|cccde3 )ec20OCCNI1Celeee(F)eel | 0.15

21k!

NCB-0846 OCICCC(Oc2cccc3enc(Nedecedne[nH]c5¢4)nc23)CCl 0.05
Compound | CNICCN(Cc2ccc(-c3cnc4[nH |ee(- 0.08

16° c3cc(CHN)cc(NS(C)(=0)=0)cS5)cdc3 )ec2)CCl1

Compound | COclcec(C#N)ecl-cleenc(Ne2eee(N3ICCOCC3)cec2)cl 0.15

8 4

PF-794 ° CC(C)NC(=0)clcce(-c2enc(N)c(-c3cec(C#HN)ec3)e2)eecl | 0.07
ON108600 | O=CINc2cc(S(=0)(=0)Cc3c(Clicccc3Cl)cec2SC1=Cclc | 0.06

“‘ ce(0)e([N+](=0)[0-])c1

Compound | CNICCN(c2cee(NC(=0)c3cec(- 0.36

37 cdce(Cl)eecd4Clo3)ec2)CC1




Atomwise-virtual high throughput screen

* Virtual high throughput AtomNet platform is a graph convolutional neural
network architecture with atoms represented as vertices and pairwise distance
dependent edges representing atom proximities

* They used their platform to identify novel bioactive scaffold hits for a diverse set
of 235 out of 318 targets without any previously known x-ray structures or
binding ligands

* Their molecular hits were novel and not similar to ones found by conventional
HTS using standard libraries

» Several of their hits were first in class novel scaffold binders for their targets

* They identified hits for challenging targets- allosteric binds and protein-protein
interactions

* Their ML virtual screen is multilayered and does consider a physics-based docking
score (AutoDock Vina)



Atomwise : Novelty of Hits

(A) Hit Rate vs. Training Examples (B) Maximal similarity between hits and training compounds
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(A) An illustration of the hit rate versus the number of training examples available to our model. Each point represents a project, with the x-axis denoting the
number of active molecules in our training for the target protein or homologs and the y-axis denoting the hit rate of the project (the percentage of
molecules tested in the project that were active). The model shows no dependence on the availability of on-target training examples. For 70% of the targets,
the AtomNet model training data lacked any active molecules for that target or any similar targets with greater than 70% sequence identity, yet the model
achieved a hit rate of 5.3% compared to 6.1% when on-target data was available. (B) The distribution of similarities between hits and their most-similar
bioactive compounds in our training data. Our screening protocol ensures that the compounds subjected to physical testing are not similar to known active
compounds or close homologs (< 0.5 Tanimoto similarity using ECFP4, 1024 bits). Because 70% of the AIMS targets had no annotated bioactivities in our

training dataset, hits identified in these projects have a similarity value of zero.

The Atomwise AIMS Program. Al is a viable alternative to high throughput screening: a 318-target study. Sci Rep 14, 7526 (2024). https://doi.org/10.1038/s41598-024-54655-z



Atomwise : performance diverse targets; with
and without structural information

Target Inference (B) Mechanism of Action
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Hit rates obtained for the 296 AIMS projects. (A) A comparison of hit rates using X-ray crystallography, NMR, Cryo-EM, and homology for modeling the
structure of the proteins. Each point represents a project with the x-axis denoting the hit rate of the project (the percentage of molecules tested in the
project that were active). The number of projects of each type is given in parentheses. We observed no substantial difference in success rate between the
physical and the computationally inferred models. We achieved average hit rates of 5.6%, 5.5%, and 5.1% for crystal structures, cryo-EM, and homology
modeling, respectively. The number of projects using NMR structures is too small to make statistically-robust claims. (B) A comparison of hit rates observed
for traditionally challenging target classes such as protein-protein interactions (PPI) and allosteric binding. Of the 296 projects, 72 targeted PPIs and 58
allosteric binding sites. The average hit rates were 6.4% and 5.8% for PPIs and allosteric binding, respectively. (C) Comparison of hit rates observed for

different target classes and (D) enzyme classes. No protein or enzyme class falls outside the domain of applicability of the algorithm.



ML and Target (protein structure prediction)

e After many years of CASP Structure Prediction Competitions, Threading and
Homology Modeling- First AlphaFold Model at CASP13

* AlphaFold developers John Jumper and Demis Hassabis shared 2024 Nobel Prize
Chemistry

* AlphaFold Protein Structure Database (https://alphafold.ebi.ac.uk/)

. AIFhaFoId.reIies on multiple sequence alignments to find evolutionar o
re aécicinshlps to predict inter residue contacts-original AlphaFold used a statistical
model;

* AlphaFold2 uses transformer architecture to integrate MSA and structural
template information;

* AlphaFold3 uses multiple sequence alignment to find close residue close pairs;
other similar models- ESMFold

* AlphaFold3 and RoseTTAFoldAll Atom use diffusion models



AlphaFold 3 (AF3) and RoseTTAFold All-Atom
(RFAA)

* Co-Folding: incorporating interactions with proteins, nucleic acids, and small molecules
within a single predictive framework

e Diffusion-based architecture, AF3 removed stereochemical loss, amino-acid specific

grames, and special handling of bonding patterns; de-emphasized protein evolutionary
ata

* These changes allowed AF3 to train on nearly all structural data which extended its
modeling capabilities to new tasks, such as protein-ligand and protein-nucleic acid
complexes.

* AF3 and RFAA Performance: In blind docking of small molecules to proteins with the
PoseBusterV2 dataset, AF3 achieved an accuracy of around 81% for predicting the native
pose within 2A RMSD

e Chai-1 and Boltz-1, AlphaFold3 comparable accuracy

bioRxiv preprint doi: https://doi.org/10.1101/2024.10.10.615955

Buttenschoen, M., Morris, G. M. & Deane, C. M. Posebusters: Ai-based docking methods fail to generate physically valid poses or generalise to novel
sequences. Chem. Sci. 15, 3130-3139 (2024).


https://doi.org/10.1101/2024.10.10.615955

However, AF3 Issues...

Limitations of AF3 with respect to stereochemistry,
hallucinations, dynamics and accuracy for certain

targets.

Stereochemistry, two main classes of violations.
The first is that the model outputs do not always
respect chirality (Fig. 5b), despite the model
receiving reference structures with correct chirality

as input features

Second class of stereochemical violations is a
tendency of the model to occasionally produce
overlap ping (clashing) atoms in the predictions.
This sometimes manifests as extreme violations in
homomers in which entire chains have been

observed to overlap

Diffusion-based AF3 model introduces the

challenge of spurious structural order
(hallucinations) in disordered regions

Dynamics- conformational states not captured
correctly...example, E3 ubiquitin ligases natively
adopt an open conformation in an apo state and
have been observed only in a closed state when
bound to ligands, but AF3 exclusively predicts the
closed state for both holo and apo systems

Nature, (630), 2024,Accurate structure prediction of biomolecular interactions with AlphaFold 3

https://doi.org/10.1038/s41586-024-07487-w



Do Deep Learning Models for Co-Folding Learn the
Physics of Protein-Ligand Interactions: AF3, RoseTTAFold

AllAtom, Boltz-1 and Chai-1

Article

https://doi.org/10.1038/s41467-025-63947-5
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Fig. 1| Binding site mutagenesis challenges against co-folding models using the
CDK2 system (PDB: 1B38). Predicted binding-site residues are shown as cyan
sticks, predicted ligand poses are shown as green sticks, and the original co-
crystallized ligand pose is shown as gray sticks. The first row shows each model’s
prediction for the wild-type protein-ligand system prior to any modification. The
remaining rows show different adversarial challenges where all binding site resi-
dues are mutated. In binding site removal, all residues are mutated to glycines
effectively removing all ligand-side-chain interactions from the original system. The
packing challenge mutates all residues to phenylalanine, removing all native

x
- @l
v, %% &k “@‘:(%\

interactions with side-chains and further occupying the pocket with bulky,
hydrophobic groups. In the inversion challenge, binding site residues are mutated
to residues with dissimilar properties. These mutations should annihilate the
binding site and remove the majority of native protein-ligands interactions
necessary for binding. However, in many cases the ligand is still predicted within
the binding site and can adopt a low RMSD pose, indicating that these co-folding
models are not predicting poses based on physics of interactions, but rather
learning patterns in global protein structures and sequences.

Bias toward preserving the original binding geometry, even when
significant structural, chemical, and physical changes were introduced
(mutated residues in binding pocket)- Why? Most of the co-folding
models rely heavily on multiple sequence alignment and 3D template-
based input features to make predictions

When removing the binding site residues, or small mutations, the
sequence alignment and template search will return exactly the same
results as before, as they are still the closest related sequences and
structures in the data set. Therefore, the MSA and template features
that the network accepts as input are identical despite the mutations,
leading the model to make a similar prediction

Validation by a physics-based methods, molecular dynamics
simulations, or inclusion of some experimental data (i.e. mass spec or
NMR) would improve predictions



Can ML/AI predicted Structures be used for
FEP? FEP and Boltz-2

* Boltz predicted protein-ligand complexes were used in ABFE to
— ) (o initialize simulations and could accurately estimate the free
| preparation | | optimization | | calculation energy of binding (AG), (provided that some care was taken
LS . | v - when choosing which structure prediction is taken forward for
%> — | : @ ez — & use in MD simulations).

@ * A pipeline that prepares Boltz predicted structures for MD by
automating the removal of common defects in the predicted

Boltz Prediction ‘

Protein sequence and MSA
>ENO1
S TLKTHARE TFDSRGNPTVEVDLF
Y1y
ShvyiL
vaan

Figure 1: The Boltz-ABFE pipeline uses Boltz-1/Boltz-2 to predict the protein-ligand com- H H
plex given the SMILES of the ligand and sequence(s) of the protein chain(s). Afterwards, S_tru Ctu res su Ch as pve rI d p pl ng ato ms ’ Clas hesl an d In correCt
the predicted protein receptor is further prepared for docking and molecular dynamics appli- | |ga N d Ste reOChe m |St ry-

cations. To correct ligand chemistry errors, the known ligand is re-docked into the receptor
o e A B g estene e reed et o - The goal of Boltz-ABFE is to accurately predict the protein-ligand
binding affinity from the compound’s SMILES string and protein

sequence information alone

A Bond order B Aromacity C Stereochemistry

* Boltz-ABFE, a pipeline corrects defects of predicted structures
and allows to perform 15 free energy simulations without
requiring experimentally-determined protein-ligand complex
structures

Figure 2: Common chemical inaccuracies in Boltz-1-generated ligand structures and the
effects of refinement strategies. Boltz-1 occasionally models the input SMILES incorrectly,
leading to incorrect bond orders (A), improper aromaticity (B), or incorrect stereochemistry

(©).

arXiv:2508.19385v1 https://doi.org/10.48550/arXiv.2508.19385



Boltz-ABFE 4 proteins from the FEP+ benchmark:
CDK2, TYKZ2, JNK1, and P38

Prediction Methods: Ao B
* Boltz-2 without redocking (labeled ”"Boltz-2” in the Figure), GREEN
e Boltz-1 with redocking using POSIT (”Boltz-1+P”) DARK BLUE

* Boltz-2 with redocking using POSIT (”Boltz-2+P”) PURPLE "
* Boltz-2 Affinity module (”Boltz-2-A”) RED 'I I IIII I I I y 'I I l'l' I I I I
Results were compared against simulations starting with crystal structures 0

TYK2 CDK2 JNK1 P38 TYK2 CDK2 JNK1 P38
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ABFE simulations startinﬁ from the crystal structure achieved the most
consistent results over all the targets when considering all of the success Y

metrics (RSME, MUE, R2 and Kendall’s T). e
The best results for TYK2 start from Boltz1+P predicted structures. | i i * i i 'Ii . i i I

The ABFE results initiated from any of the Boltz predicted structures
aChIeved SatISfa Ctory reSUItS Wlth MUE < 1 kcal/mOI on ave rage' (MUE= Figure 8: (A) Root mean square error (RMSE) between calculated and experimental AG
mean u nSlgned erro r) values for four target systems (TYK2, CDK2, JNK1, and P38), using input structures gener-

ated by the Boltz-1/2 models or taken from the protein-ligand benchmark. Three replicates

The poorer pe rfOrmance Of BOltZ-z can be attri buted to the TYK2 proteln’ were performed for all sets. RMSE error bars represent the standard deviation across repli-
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where the predictions have MUE' s > 1 kcal/mol. the predicted TYK2 e e e e e
structures, we observed that Boltz-2 flipped a side-chain in the binding hetween caleulated and experimental AG values. - ' o

pocket compared to Boltz-1,

Boltz-2 Affinity module also performs well on this dataset, yieIdin%
correlation metrics that are slightly better than those from the Boltz-1+P
ABFE simulations.



PoseBuster Docking Challenge: ML vs Physics based methods...

* PoseBuster’s checks the quality of docked ligand structures using the RDKit
Distance Geometry Module rules evaluating stereochemistry and inter and
|r|1tr?]molecular measurements- bond lengths, planarity of aromatics and atom
clashes.

* In the evaluation and comparison of five deep learning “Al” docking methods-
DeepDock, DiffDock, EquiBind, TankBind and Uni-Mol, compared with traditional
Bhysics—based docking methods -Auto Dock Vina and CCDC Gold, the physics-

ased docking methods limited the degrees of movement in the ligand to only
the permissible rotatable bonds in the ligand and included penalties for protein
and ligand clashes.

* The conclusion reached b¥ this published study was that “no deef) learning-
based method yet outperforms classical docking tools”. And “molecular
mechanics force fields contain docking-relevant physics missing from deep
learning methods”

PoseBusters: Al-based docking methods fail to generate physically valid poses or generalise to novel sequencest
Martin Buttenschoen, Garrett M. Morris and Charlotte M. Deane *: Chem. Sci., 2024, 15, 3130



In summary: ML cannot extrapolate if data is
not represented in the training set...

* The analyses and predictions made by Al and ML software can only be
as good as the data sets that support them.

* Even small, biologically plausible perturbations can result in
significant discrepancies in predicted structures, highlighting
vulnerabilities in these models. —like the residue mutations in the

binding site.
* ML designed molecules are more successful in Phase | than Phase Il

* ML success could be explained by the fact that test data sets already have

optimized ADME and safety profiles and so using these types of data sets for
training makes Phase | outcomes more successful, but this does not transfer

to Phase Il and beyond...



n Summary: Deep Learning Model
Problems...

* Deep learning models rely in data driven patterns

* Studies* have shown that the performance of these deep learning methods
predominantly comes from their pocket finding ability and not an ability to
resolve detailed molecular interactions.

* Fundamental principles of physical interactions- hydrogen bonding, electrostatic
forces and steric constraints —interactions that govern stability and specificity in
molecular interactions and are important for predicting biologically and
functionally relevant conformation are not considered- ability to model physical
interactions is crucial for drug discovery

* Deep learning models can not generalize beyond their training data set and can
overfit to statistical correlation and can lead to incorrect conclusions regarding
biological activity

* Researchers have shown that co-folding models largely memorize ligands from
their training data and do not generalize well to unseen ligand structures*.

*Yu, Y., Lu, S., Gao, Z., Zheng, H. & Ke, G. Do deep learning models really outperform traditional approaches in molecular docking? International Conference on Learned Representations, MLDD Workshop (2023).
Masters, M., Mahmoud, A. H. & Lill, M. A. Pocketnet: ligand-guided pocket prediction for blind docking. International Conference on Learned Representations, MLDD Workshop (2023).
+Skrinjar, P., Eberhardt, J., Durairaj, J. & Schwede, T. Have protein-ligand co-folding methods moved beyond memorisation? bioRxiv, https://doi.org/10.1101/2025.02.03.636309 (2025)



https://doi.org/10.1101/2025.02.03.636309

FINAL CONCLUSIONS

“Our findings underscore the models’ (i.e. AF2, RF) limitations in generalizing
effectively across diverse protein-ligand structures and highlight the necessity of
integrating robust physical and chemical priors in the development of such
predictive tools. The results advocate a measured reliance on deep-learning-based
models for critical applications in drug discovery and protein engineering, where a
deep understanding of the underlying physical and chemical properties is crucial.”

. Investigating whether deep learning models for co-folding learn the physics
of protein-ligand interactions, Matthew R. Masters, Amr H. Mahmoud
Markus A. Lill Nature Communications volume 16, Article
number:8854(2025)

Al Does Not Make It Easy
IN THE PIPELINE:DRUG DEVELOPMENT , 18 OCT 2024, BY DEREK LOWE

https://www.science.org/content/blog-post/ai-does-not-make-it-easy
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