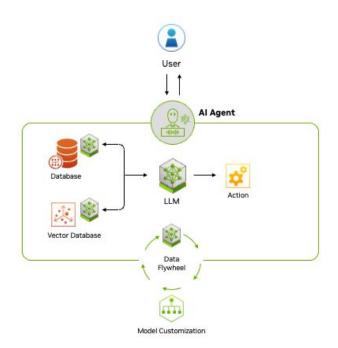
Multi-Agent Drug Discovery Orchestra

Dr. Andrei Dmitrenko 21.10.25

About

- Senior consultant @ D ONE (Zurich, Switzerland)
- Lead researcher @ ITMO University (St. Petersburg, Russia)
- Short vita:
 - 2018 systems biology team lead @ BIOCAD LLC
 - 2022 doctor of sciences @ ETH Zurich
 - o 2024 data & software engineer @ Calico Life Sciences LLC
 - 2025 3 posters and the Top Reviewer award @ NeurIPS conference


Center for AI in Chemistry @ ITMO University

- Since 2022
- Now >30 people
- A Master's program (21 students)
- World-class research
- Academic and industrial collabs
- Core competences in:
 - Cheminformatics
 - Materials science
 - Bioinformatics
 - Artificial intelligence

Agentic AI is the new frontier

- Agent is:
 - a stateful LLM app designed to fulfil a particular role
 - equipped with tools and memory
 - free to reason, use tools, and perform actions in the real world
- Agent is, therefore, much like a human at work

Applications of agentic systems

nature > npj computational materials > articles > article

Article Open access | Published: 23 June 2025

Agent-based multimodal information extraction for nanomaterials

R. Odobesku, K. Romanova, S. Mirzaeva, O. Zagorulko, R. Sim, R. Khakimullin, J. Razlivina, A. Dmitrenko

& V. Vinogradov

npj Computational Materials 11, Article number: 194 (2025) Cite this article

6358 Accesses | 1 Citations | 20 Altmetric | Metrics

Benchmarking Agentic Systems in Automated Scientific Information Extraction with ChemX

Anastasia Vepreva¹ Julia Razlivina¹

Maria Eremeeva¹ Nina Gubina¹ Anastasia Orlova¹ Aleksei Dmitrenko¹

Ksenya Kapranova¹ Susan Jyakhwo¹ Nikita Vasilev¹ Arsen Sarkisyan¹

Ivan Yu. Chernyshov¹ Vladimir Vinogradov¹ Andrei Dmitrenko^{1,2}

¹Center for AI in Chemistry, ITMO University, St. Petersburg, Russia ²D ONE AG, Zurich, Switzerland

dmitrenko@pish.itmo.ru

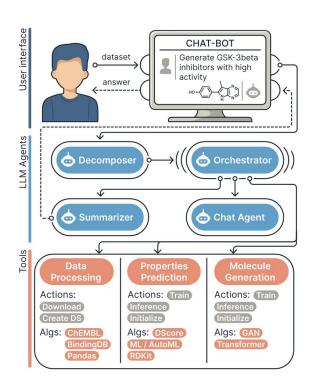
MADD: Multi-Agent Drug Discovery Orchestra

Gleb V. Solovev *1, Alina B. Zhidkovskaya¹, Anastasia Orlova¹, Nina Gubina¹, Anastasia Vepreva¹, Rodion Golovinskii¹, Ilya Tonkii¹, Ivan Dubrovsky¹, Ivan Gurev¹, Dmitry Gilemkhanov¹, Denis Chistiakov¹, Timur A. Aliev¹, Ivan Poddiakov², Galina Zubkova², Ekaterina V. Skorb¹, Vladimir Vinogradov¹, Alexander Boukhanovsky¹, Nikolay Nikitin¹, Andrei Dmitrenko †1,3, Anna Kalyuzhnaya ‡1, and Andrey Savchenko².4

¹ITMO University, Saint Petersburg, Russia ²Sber AI Lab, Moscow, Russia ³D ONE AG, Zurich, Switzerland ⁴HSE University, Moscow, Russia

MADD

 A multi-agent system designed to address hit identification in silico


Expects a user query in natural language as a default input

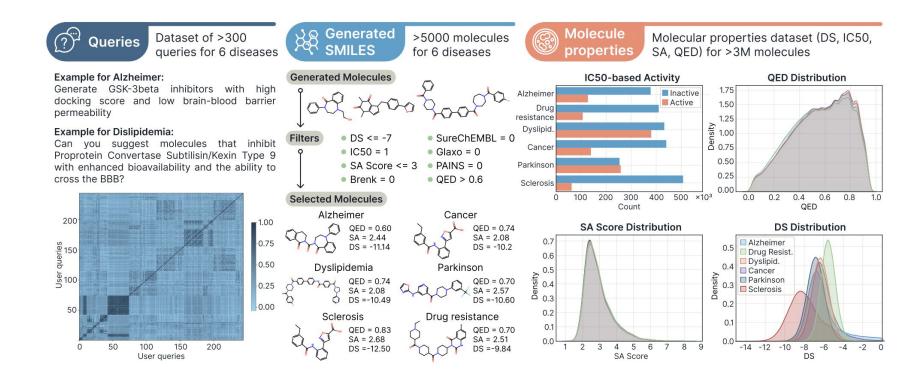
'input': 'Generate molecule of GSK-3beta inhibitors with high docking score'

Provides a list of generated molecules

as a target output

```
{'Smiles': {'0': 'OC12C3C=C(Br)C4=
   NCC5 (CN6CC65) C4N1CC2CC3',
           '1': 'COC1(OC)C2C3C4CCN(
               C#N) C3C41c1nncn12'},
 'Brenk': {...}, 'QED': {...}, '
     Synthetic Accessibility':
     \{\ldots\},
 'LogP': {...}, 'Polar Surface Area
     ': {...}, 'H-bond Donors':
 'H-bond Acceptors': {...}, '
     Rotatable Bonds': {...},
 'Aromatic Rings': {...}, 'Glaxo':
     {...}, 'SureChEMBL': {...},
 'PAINS': {...}, 'Validity': {...},
      'Duplicates': {...},
 'docking_score': {...}, 'IC50':
     {...}}
```


MADD approach


- Case-driven:
 - Alzheimer's
 - o Parkinson's
 - Multiple sclerosis
 - Lung cancer
 - Dislipidemia
 - Drug resistance
 - + Thrombocytopenia

- Systematic:
 - Producing two benchmarking assets: the dataset of validated user queries and 3M of scored molecules

Innovative:

Pioneering the application of AI-first drug design to five targets:
 STAT3, ABL,
 COMT, ACL, and
 PCSK9

Proposed benchmark

Agentic system design

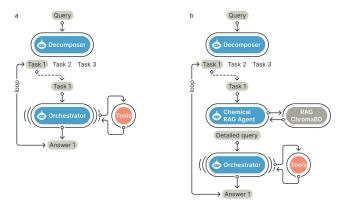


Figure 12: Visualisation of MADD-v2A and MADD-v3 systems.

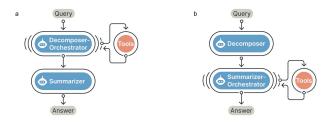
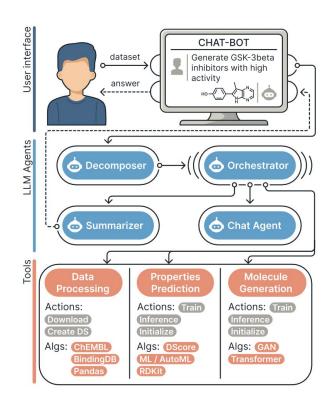
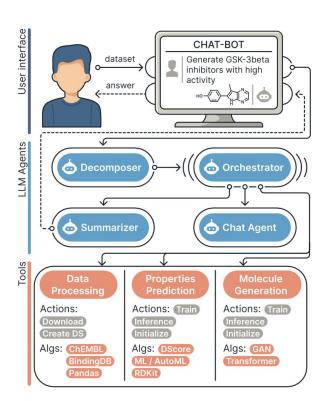
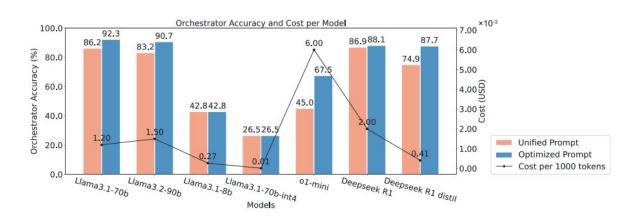



Figure 13: Visualisation of MADD-v2C and MADD-v2B systems.



Agentic system design

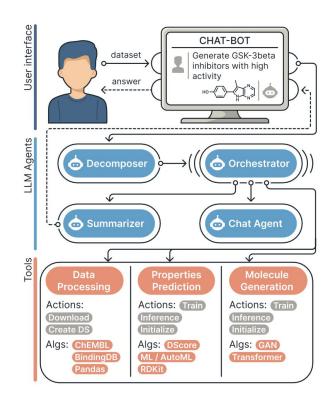
Table 1: Comparison of MADD with other candidate architectures for multi-agent systems by TS, SSA, and FA metrics.


Metric	TS	SSA	FA
MADD	83.7	95.3	79.8
MADD-v1	42.5	70.0	29.8
MADD-v2A	35.0	65.1	22.8
MADD-v2B	76.7	95.3	73.0
MADD-v2C	81.4	53.7	43.7
MADD-v3	46.5	75.6	35.2

- TS Tool Selection
- SSA System Summarization Accuracy
- FA Final Accuracy

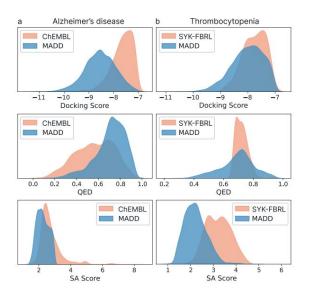
Agentic system design

Orchestration is all you need



Levels of complexity

Table 2: Comparison of the Final Accuracy (%) of MADD and baseline methods on datasets of different complexity.


Dataset	S	M	L
MADD	86.9	84.3	79.8
ChemAgent	12.4	15.3	16.4
LlasMol	0.46	0.24	0
X-Lora-Gemma	0.44	0.12	0
ChemDFM	5.31	0.33	0

- S only single-task queries
- M up to 3 tasks in a query
- L up to 5 tasks in a query
- * **Phoenix** from the FutureHouse Platform managed to create a single molecule that satisfied the 2/5 filter groups, but no more. The molecules produced by **TxGemma** did not pass any filters.

Validation case studies

Reproducing experimentally validated molecules for validation

Case	Alzheimer		Thrombocytopenia			
Model	Model MADD MADD Auto		SYK-FBRL	MADD Auto		
Mean DS	-7.46	-7.57	-7.76	-8.02		
Novelty	78.21	73.47	100	100		
Validity	87.47	89.5	100	90.71		
GR1,%	20.30	15.99	0.18	1.54		
GR2,%	17.56	14.43	0.07	1.35		
GR3,%	13.72	13.14	0.06	1.32		
GR4, %	13.40	12.34	0.06	1.32		
GR5,%	13.40	12.34	0.06	1.32		

What MADD is and isn't

ls:

- A first-of-its-kind effective application of multi-agent systems to early drug discovery
- A powerful showcase for the next-generation pharma R&D tools
- A versatile interface
 for the wet-lab researchers

Is not:

- A universal framework to solve drug design
- A commercially available product
- A definitive solution for hit identification – a lot more to come

Multi-Agent Drug Discovery Orchestra

Thank you

Work & collaboration: dmitrenko@pish.itmo.ru

Appendix: molecule generation

		GR1	GR2	GR3	GR4	GR5	Diversity
Drug resistance	GAN	0.23	0.15	0.10	0.10	0.10	0.39
	Transformer	8.32	6.92	6.14	6.05	6.05	0.77
	RL	0.63	0.52	0.40	0.38	0.38	0.13
	MTDD-EF	0.00	0.00	0.00	0.00	0.00	0.11
	ChemTSv2	0.14	0.14	0.09	0.09	0.09	0.43
Dyslipidemia	GAN	7.27	6.15	4.92	4.72	4.72	0.34
	Transformer	28.87	28.27	25.07	24.50	13.16	0.21
	RL	0.02	0.02	0.02	0.02	0.02	0.05
	MTDD-EF	0.00	0.00	0.00	0.00	0.00	0.06
	ChemTSv2	0.12	0.12	0.06	0.06	0.06	0.44
	GAN	5.53	4.41	3.43	3.31	3.31	0.39
Lung cancer	Transformer	6.12	5.72	4.97	4.76	4.76	0.8
	RL	0.57	0.53	0.51	0.51	0.51	0.09
	MTDD-EF	1.00	1.00	1.00	1.00	1.00	0.11
	ChemTSv2	6.65	6.65	4.06	3.53	3.53	0.43

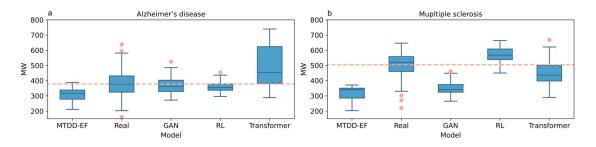


Figure 11: Comparison of the molecular mass of experimentally validated molecules ("Real") with generated molecules using MTDD-EF and integrated models for: a) Alzheimer's disease, b) Multiple sclerosis.

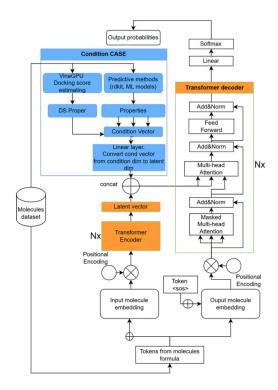


Figure 10: Our CVAE transformer architecture

Model	GAN	Transformer
GPU memory (GB)	6.40	8.43
Training time (hours)	2.82	23.73
Generation time (ms/molecule)	0.19	295.00
Generation time (ms/molecule)	0.19	295.00