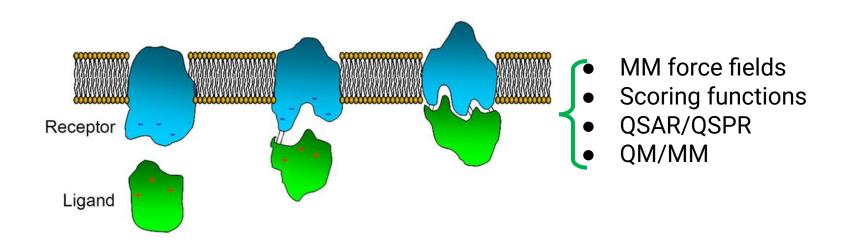


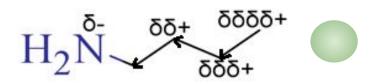
Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia

DENR+POL:

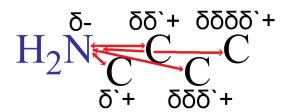

Theoretically consistent polarizable empirical charges for drug-like and biological molecules

A.R. Shaimardanov, V.S. Frolov, D.A. Shulga, V.A. Palyulin

XXXI Symposium on Bioinformatics and Computer-Aided Drug Discovery (BCADD-2025)


Empirical atomic charge models

- \square Atomic charges (q) a popular approach to evaluate electrostatic interactions.
- □ No unambiguous definition => many charge calculation methods.
- ☐ For much medicinal chemistry goals empirical atomic charge models.
- ☐ Advantages: high speed, moderate accuracy, interpretability.



Electronic effects: an Essence of empirical charge models

- ☐ Electronic effects concept is a physical basis of empirical models.
- ☐ An electronic effect hypothetic shift of electronic density due to mutual influence of some molecular fragments.
- ☐ An generalization of organic chemistry experience.
- Examples: inductive effect, polarization.
- \Box The more correct the physics = the more accurate the method.
- ☐ Consistent description the cornerstone of the effects world.

influence through σ-bonds

through electric field

Account for effects: Current situation

Charge model	Inductive effect	Polarization effect
EEM	-	+/-
AACT	?	+
SQE	?	+
SQE+Q0	?	+
ACKS2	?	+
PEOE	+	-
MMFF94 BCI	-	-
DENR	+	-
Ŷ X	+	+

Aim and objectives of the research

The aim:

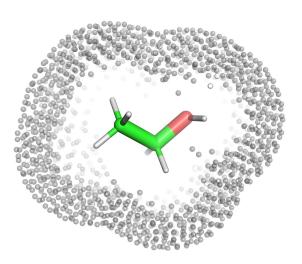
To develop empirical charge calculation method, DENR+POL, that consistently describes inductive and polarization (Pol) effects in the drug-like molecules.

The objectives:

- 1. To study the polarization of intra- and intermolecular hydrogen bond (HB) in the drug-like molecules.
- 2. To determine the consistency of the effects description.
- 3. To identify the applicability of the model to drug-like molecules.
- 4. To reproduce QC molecular electrostatic potential (MEP) of the molecules.

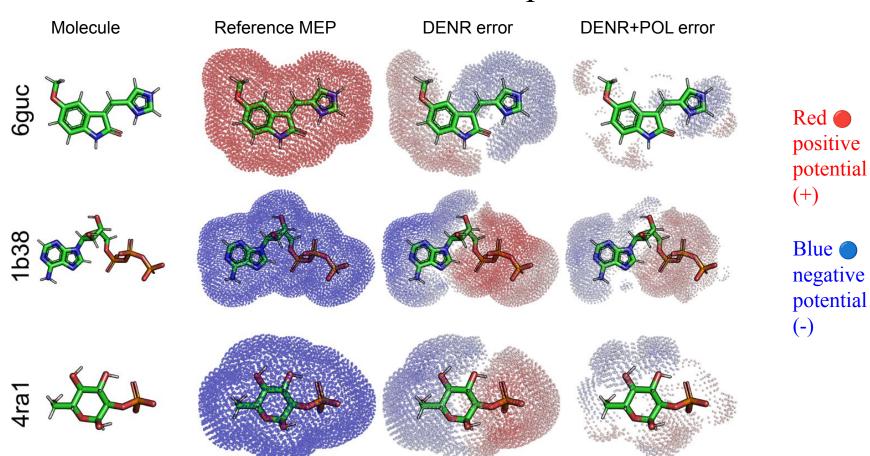
Methods & Materials

Molecular set: 7K drug-likes -PDBbind refined set v2020 + subset of the MMFF94 molecule training set.


QC MEP as the reference.

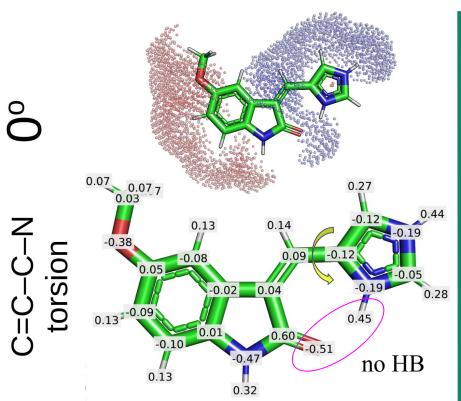
Quality metric of a model:

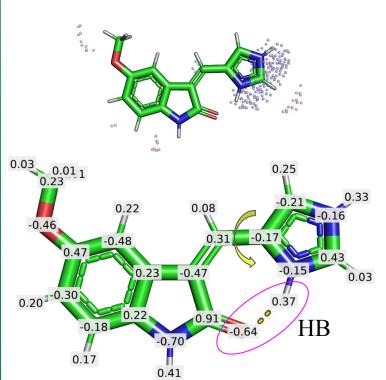
residual error
$$(m) = MEP_m^{ref} - MEP_m^{emp} = MEP_m^{ref} - \sum_{i}^{N_{atoms}} \frac{q_i}{R_{i,m}}, \forall_m^{N_{MEPpoints}}$$


Selected molecules for analysis:

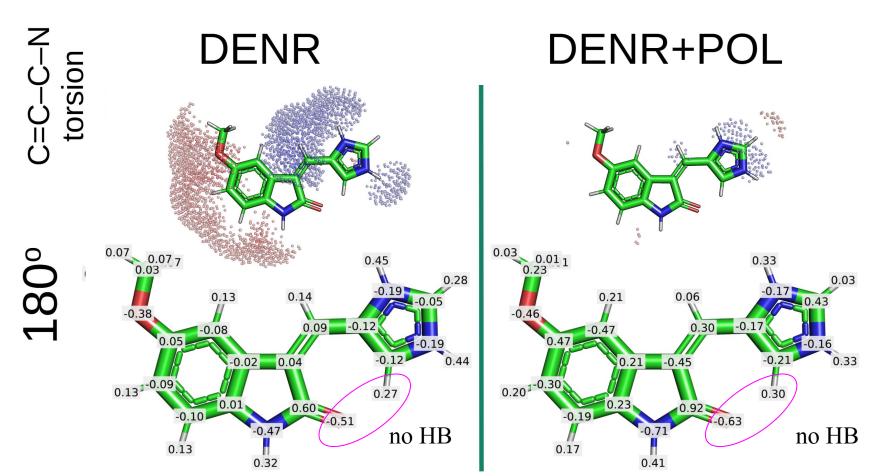
- 1) drug-like with intramolecular HB;
- 2) HB complex of two drug-like molecules.

MEP on the grid

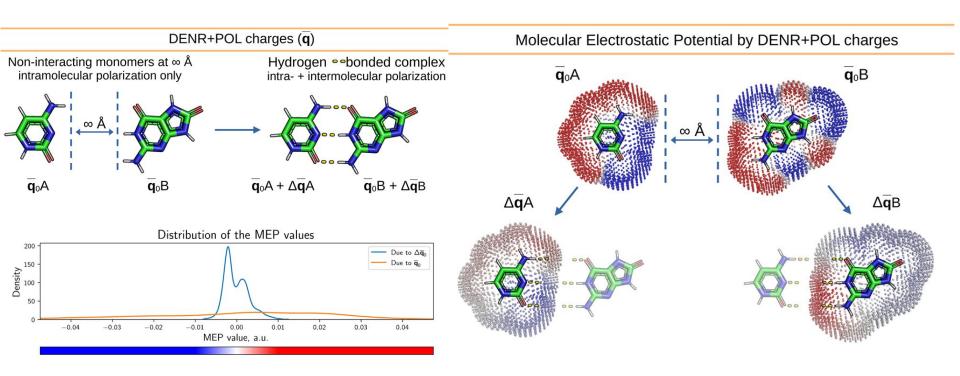

Results: residual MEP reproduction



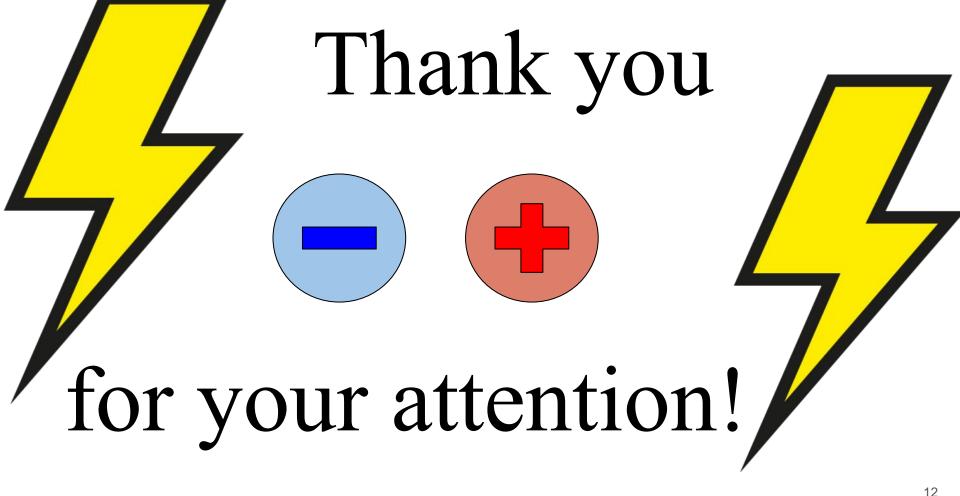
Results: Polarization of intramolecular HB


DENR

DENR+POL



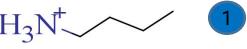
Results: Polarization of intramolecular HB



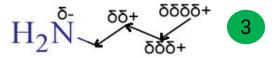
Results: Polarization of intermolecular HB

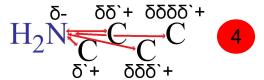
Conclusions

- 1. We developed new empirical charge model, DENR+POL, and parameterized it using QC MEP.
- 2. The model consistently accounts for both inductive and polarization effects in medicinal chemistry-related molecules.
- 3. The DENR+POL well describes polarization in both intermolecular and intramolecular HB.
- 4. Theoretical consistency and low computational cost of the model => an appealing first choice method for drug-like molecules.


Requirements of good empirical charge model

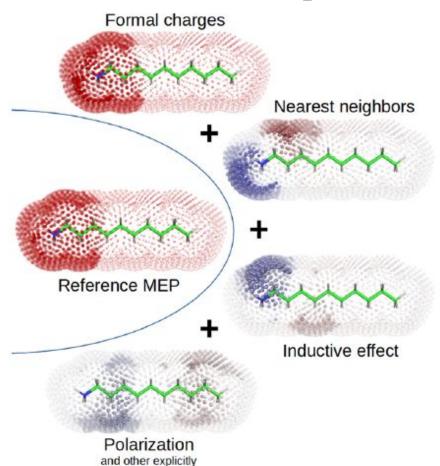
The important effects:


- Ionized (formally charged) groups
- Influence of nearest neighbors directly bonded atoms
- Inductive effect remote atoms influence through σ-bonds
 - 4. Polarization effect through electric field


Molecular electrostatic potential (MEP) – unambiguously defined quantity.

MEP reproduction by charges → **correct** description **electrostatic** interactions.

$$H_2^{\delta-}$$


Model X with wide applicability domain:

- Effects 1-4
- Correct account for polarization
 - MEP reproduction

Charge Model DENR (it exists):

- Effects 1-3 (no Pol)
- Background for Pol treatment
 - MEP reproduction

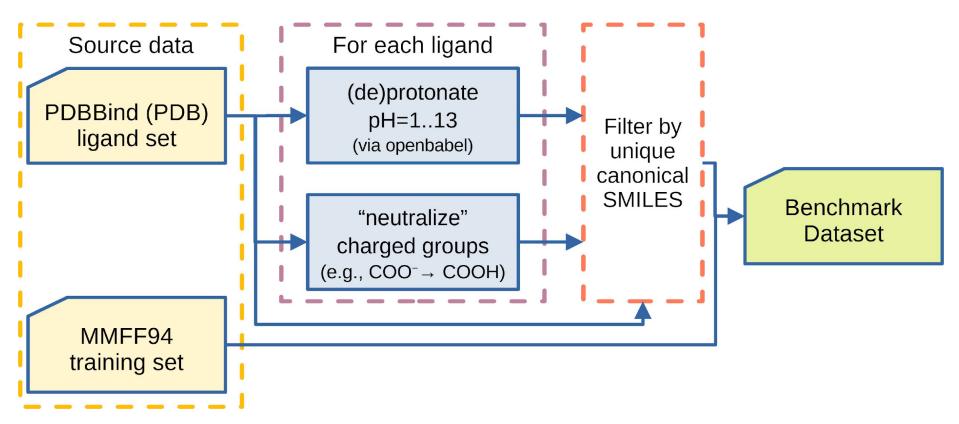
Concept of consistent description

unaccounted effects

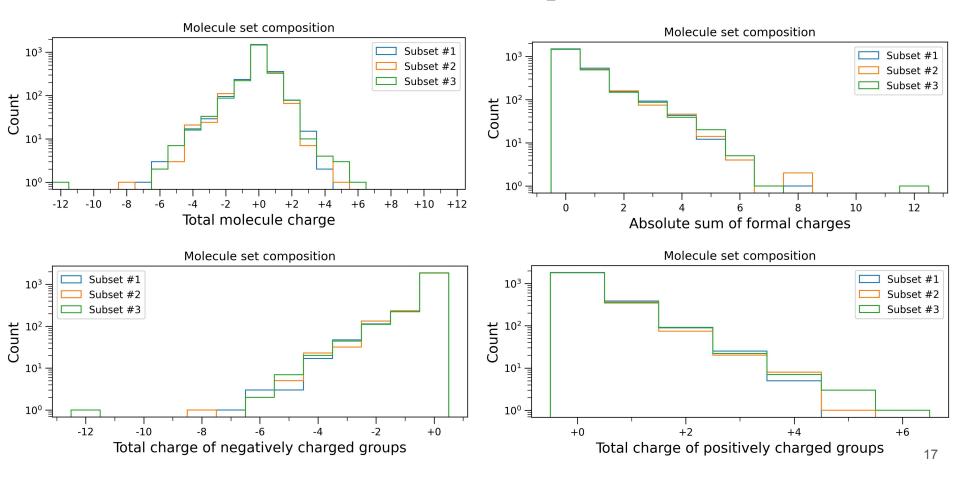
Consistent description = **hierarchy effects**¹ **principle**:

the description of more fundamental effect should always precede description of more subtle one.

The example: formal charges > nearest neighbors > inductive effect ≈ polarization


(1) Shaimardanov, A. R. et al. *J. Phys. Chem. A.* **2022**, 126, 6278.

Hierarchy of the effects



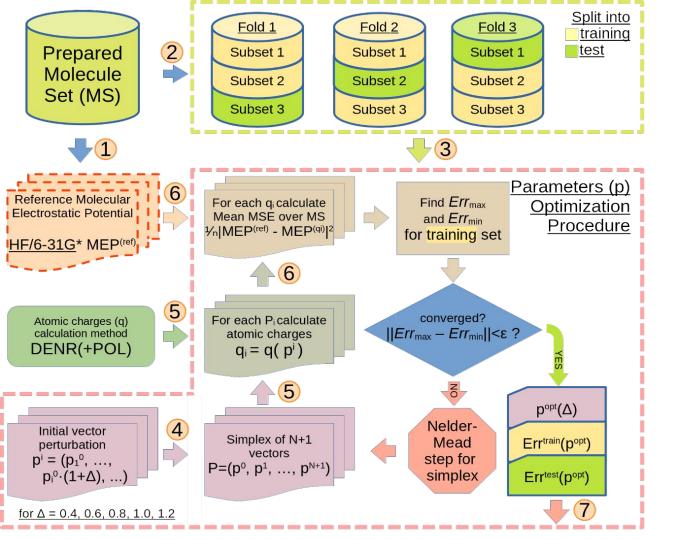
Methodology from (1) Shaimardanov, A. R. et al. J. Phys. Chem. A. 2022, 126, 6278.

Procedure of dataset preparation

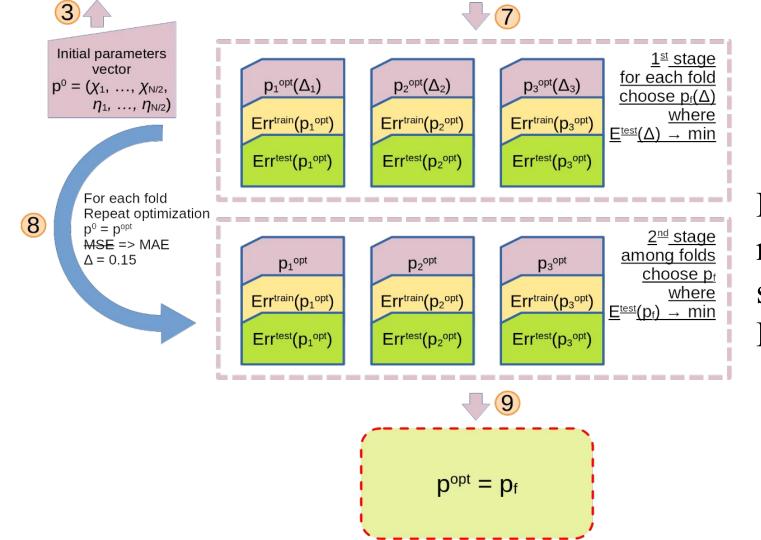
Molecule set composition

Calculation of the MEP reproduction error

$$MMSE = \frac{1}{Nmols} \sum_{i}^{Nmols} \frac{1}{NMEPpoints} \sum_{j}^{NMEPpoints} \left[MEP_{j} - \sum_{i}^{Natoms} \frac{qi}{Rij} \right]^{2}$$

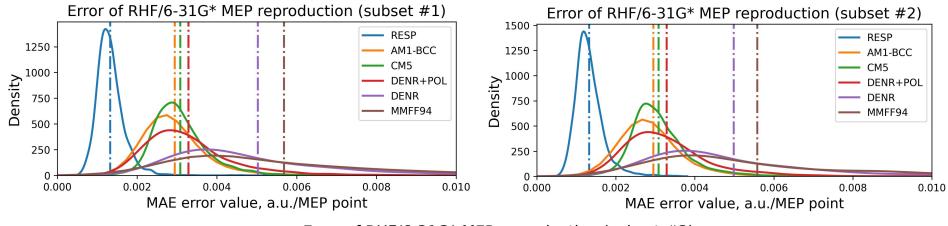

$$MMAE = \frac{1}{Nmols} \sum_{i}^{Nmols} \frac{1}{NMEPpoints} \sum_{j}^{NMEPpoints} \left| MEP_{j} - \sum_{i}^{Natoms} \frac{qi}{Rij} \right|$$

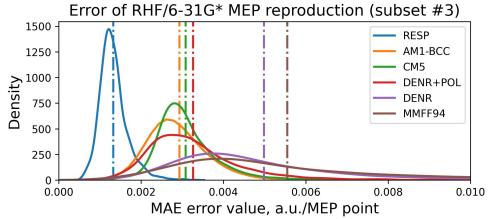
$$MEP_{j} - \sum_{i}^{Natoms} \frac{qi}{Rij}$$
(B2)


where MMSE stands for Mean (Mean Squared Error), MMAE stands for Mean (Mean Absolute Error), MEP_j is a value of a potential in j-th MEP point, q_i is charge value on i-th atom, R_{ij} is a distance between i-th atom and j-th MEP point.

Split into Fold 1 Fold 2 Fold 3 training Prepared Subset 1 Subset 1 Subset 1 test Molecule Subset 2 Subset 2 Subset 2 Set (MS) Subset 3 Subset 3 Subset 3 Parameters (p) Reference Molecular Find Errmax For each a calculate Optimization Electrostatic Potential Mean MSE over MS and Errmin Procedure /nIMEP(ref) - MEP(qi)|2 for training set For each Picalculate converged? Atomic charges (q) calculation method atomic charges $||Err_{max} - Err_{min}|| < \epsilon$? DENR(+POL) $q_i = q(p^i)$ $p^{opt}(\Delta)$ Nelder-Initial vector Simplex of N+1 perturbation Mead Errtrain(popt) vectors $p^i = (p_1^0, ...,$ step for P=(p0, p1, ..., pN+1) $p_i^0 \cdot (1 + \Delta), ...)$ simplex for $\Delta = 0.4, 0.6, 0.8, 1.0, 1.2$ 34 Initial parameters 1st stage vector for each fold $p_2^{opt}(\Delta_2)$ $p_3^{opt}(\Delta_3)$ $p_1^{opt}(\Delta_1)$ $p^0 = (\chi_1, ..., \chi_{N/2},$ choose $p_t(\Delta)$ $\eta_1, ..., \eta_{N/2}$ where Errtrain(p1opt) Errtrain(p2opt) Errtrain(p3opt) $E^{test}(\Delta) \rightarrow min$ Errtest(p1opt) Errtest(p3opt) For each fold Repeat optimization 2nd stage MSE => MAE among folds $\Delta = 0.15$ p_1^{opt} p₂opt p₃opt choose pr where Errtrain(p1opt) Errtrain(p2opt) Errtrain(p3 opt) $E^{test}(p_f) \rightarrow min$ Errtest(p3opt) ---- $p^{opt} = p_f$

Parameters minimization scheme


Parameters minimization scheme.
Part 1



Parameters minimization scheme.

Part 2

Cross-validation results

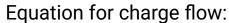
ENR formalism

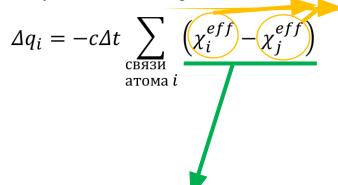
Molecular energy as a function of atomic charges:

$$E_{mol}(q) = E_0 + \sum_{i=1}^{N_{atoms}} \left[\chi_i^0 q_i + \eta_i^0 q_i^2 \right]$$

Electronegativity:
$$\chi_i = \frac{\partial E_{mol}(q)}{\partial q_i}$$

Hardness:
$$\eta_i = \frac{\partial^2 E_{mol}(q)}{\partial q_i^2} = \frac{\partial \chi_i}{\partial q_i}$$

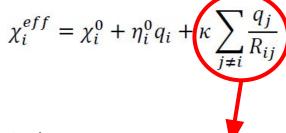

Charge flow:
$$\frac{dq_i}{dt} = -c \cdot \sum_{j}^{bonas} \left(\chi_j^{eff} \left(q_j^{(n)} \right) - \chi_i^{eff} \left(q_i^{(n)} \right) \right)$$
$$\chi_i^{eff} \left(q_i \right) = \chi_i^0 + \eta_i^0 \cdot q_i$$
$$for k = 1...n$$


Charge on k-th iteration:
$$q_i^0$$

Charge on k-th iteration:
$$q_i^{(k)} = q_i^{(k-1)} + \frac{dq_i}{dt} \Delta t$$

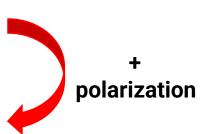
for i = 1..N

Derivation of formulas for description of polarization



Accounts for directly bonded neighbors and inductive effect

Dependence of **electronegativity** of *i-th* atom on charge in <u>DENR</u>:


$$\chi_i^{eff} = \chi_i^0 + \eta_i^0 q_i$$

Dependence of **electronegativity** of *i-th* atom on charge in DENR+POL:

Theoretical background

Add correct description of **polarization**

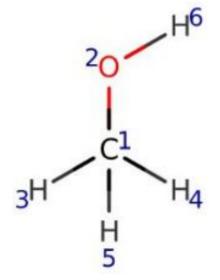
Laplace matrix formalism

$$\frac{\mathrm{d}q_{i}}{\mathrm{d}t} = -c \cdot \sum_{j \in \{i, j\}}^{bonds \ of \ i} \left(\chi_{i}^{eff}(\mathbf{q}) - \chi_{i}^{eff}(\mathbf{q}) \right)$$

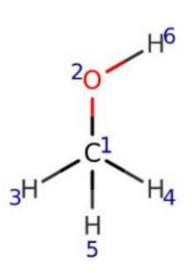
$$\frac{\mathrm{d}\mathbf{q}}{\mathrm{d}t} = -c \cdot L \chi^{eff}(\mathbf{q})$$

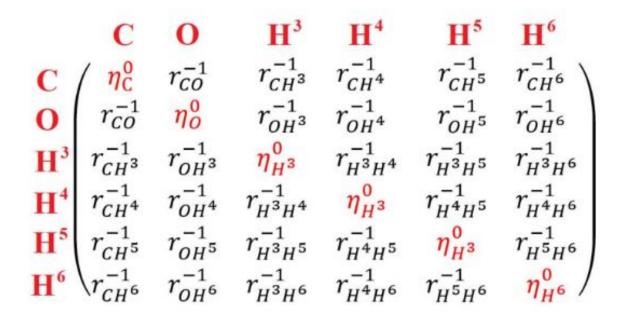
$$\mathbf{H}_{2} \underbrace{\sum_{j \in \{i, j\}}^{H_{3}} H_{2}}_{N_{1}}$$

$$\frac{\mathrm{d}\mathbf{q}}{\mathrm{d}t} = -c \cdot L \chi^{eff}(\mathbf{q})$$

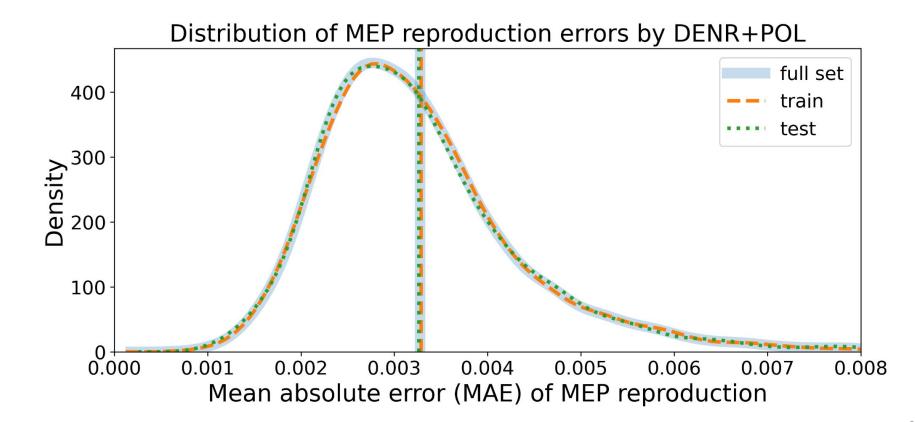

$$\mathbf{H}_{6}$$

$$L_{ij} = \begin{cases} \deg(i), & \text{if } i = j \\ -1, & \text{if } i \text{ is bonded to } j \\ 0, & \text{otherwise} \end{cases}$$

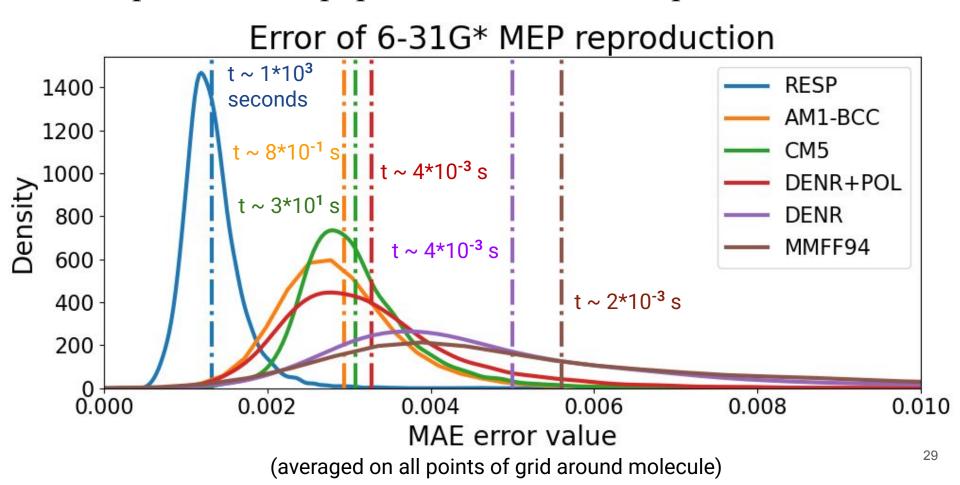

Laplace matrix


Hardness matrix for DENR

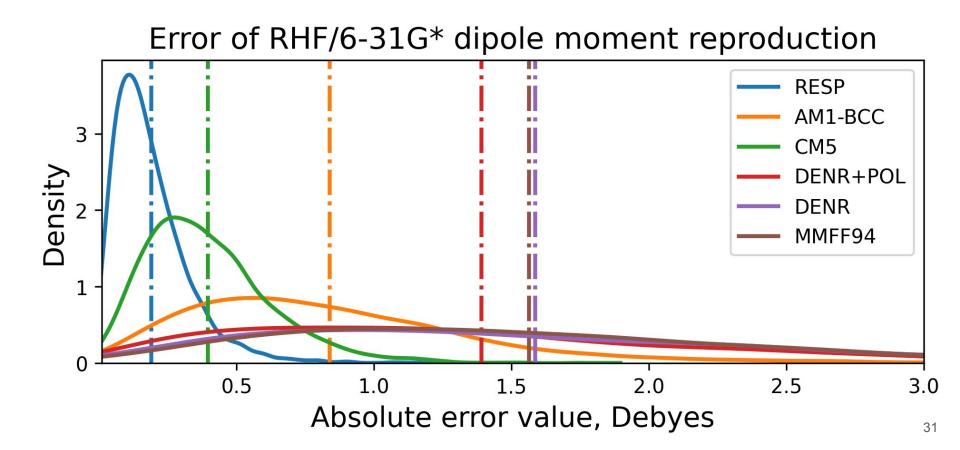
	C	O			H ⁵	\mathbf{H}^6
C	$/\eta_{\rm C}^0$	0	0	0	0	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$
O	0	η_o^0	0	0	0	0
H^3	0	0	$\eta_{H^3}^0$	0	0	0
H^4	0	0	0	$\eta_{H^3}^0$		0
H ⁵	0	0	0 0 η _H ⁰ 3 0 0	0	$\eta_{H^3}^0$	$\begin{bmatrix} 0 \\ n_{ij}^{0} \end{bmatrix}$
H^6	0 /	0	0	0	0	$\eta_{H^6}^0$



Hardness matrix for DENR+POL



Distribution of the MEP errors reproduction by DENR+POL


Comparison with popular models: MEP reproduction

Comparison with popular models: Runtime

	Runt	ime, sec	
Method	mean	σ	mean runtime relatively to the DENR+POL
RESP	1.2×10^3	1.0×10^3	2.3×10 ⁵
CM5	30	22	5.9×10 ³
AM1-BCC	0.8	1.1	1.6×10 ²
DENR+POL	5.1×10 ⁻³	1.8×10 ⁻³	1
DENR	4.5×10 ⁻³	4.2×10 ⁻⁴	0.88
MMFF94	1.8×10 ⁻³	4.3×10 ⁻⁵	0.35

Comparison with popular models: dipole reproduction

DENR+POL "wins" DENR in MEP reproduction

	MEP repro error, a.u.	
ID	DENR +POL	DENR
1	6.7	18.9
2	3.7	11.9
3	3.6	8.6
4	3.2	8.3
5	3.2	8.0
6	6.3	15.1
7	4.9	9.9
8	8.4	18.9

Biomolecules: perspectives

Table G1. Dependence of the MEP reproduction error on the molecule conformation.

	MAE, a	ı.u. × 10 ⁻³
deg	DENR	DENR+POL
0	9.0	3.1
15	8.8	3.1
30	8.5	2.9
45	8.3	2.8
60	8.3	2.9
75	8.3	2.9
90	8.3	2.9
105	8.3	2.9
120	8.2	2.9
135	8.1	2.9
150	8.1	2.9
165	8.3	2.8
180	8.4	2.8
195	8.3	2.8
210	8.1	2.9
225	8.1	2.9
240	8.2	2.9
255	8.3	2.9
270	8.3	2.9
285	8.3	2.9
300	8.3	2.8
315	8.3	2.8
330	8.5	2.9
345	8.8	3.1
360	9.0	3.1
mean	8.4	2.9
avedev	0.2	0.1
avedev/mean, %	2.31%	2.17%

Dependence of the MEP reproduction error on the molecular conformation.