

Laboratory for Information Technology in Pharmacology and Computer Modeling of Drugs for Research Center of Innovative Medicines XXXI Symposium on Bioinformatics and Computer-Aided Drug Discovery (BCADD-2025)

Consensus Methodology For Directed Searching Compounds With Antimicrobial Activity Against S. aureus

Arina V. Golubeva arina_arina_golubeva@mail.ru

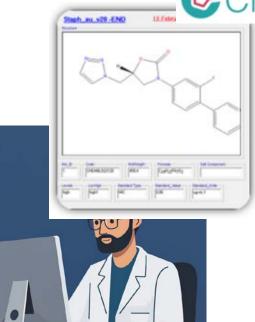
Background

- Antimicrobial resistance is a global health threat, posing significant challenges to public health.
- Staphylococcus aureus is a major cause of infections, contributing to the urgency of finding new antimicrobial compounds.
- There is a critical need for new antimicrobial compounds to combat the rising threat of antimicrobial resistance.

GLOBAL

A failure to address the problem of antibiotic resistance could result in:

Objective


The objective of this study was to develop a consensus methodology for predicting antimicrobial activity against *Staphylococcus aureus* using 4 different predictive models.

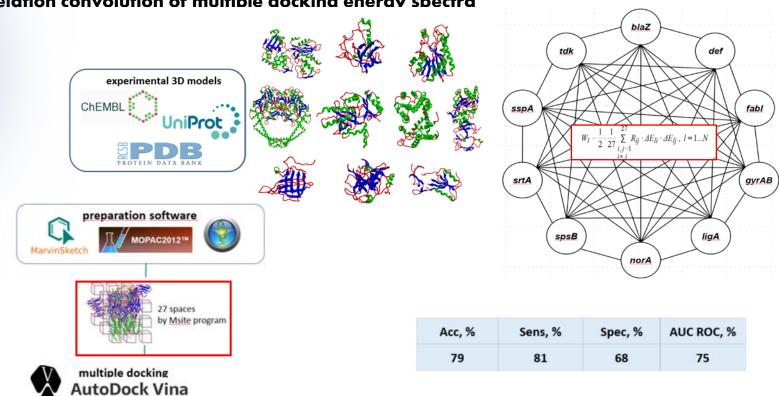
Additionally, the study aimed to conduct a directed searching for promising compounds suitable for subsequent synthesis using this methodology.

Training datasets

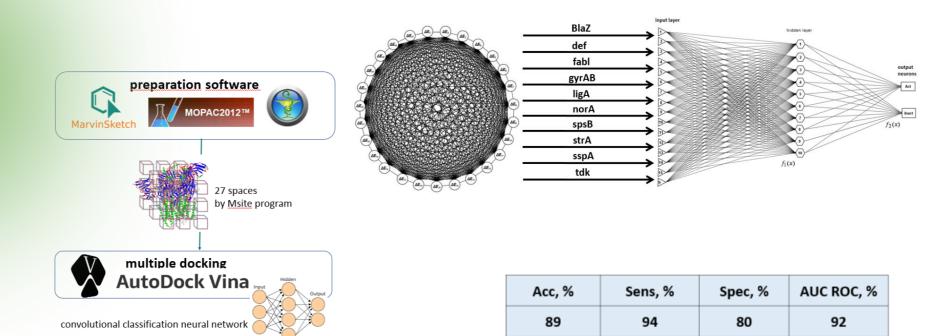
- 284 structural analogs of the studied scaffold
 4(3H)-quinazolinone
- verified database of 3768 antimicrobial substances with experimentally established levels of antimicrobial activity

Predictive dataset

database of 71 new 4(3H)quinazolinone derivatives with an assumed antimicrobial activity of S. aureus

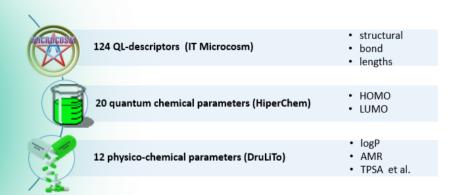

Methods for targeted discovery of promising compounds

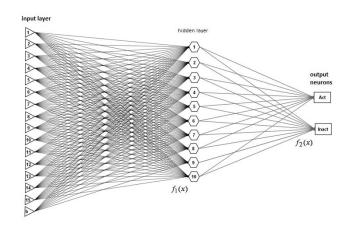
novel architecture of fully connected convolutional neural network based on correlation convolution of multiple docking energy spectra


of the Microcosm IT
system

convolutional feedforward neural network correlation based on multiple docking energies multidescriptor
perceptron neural
network model based
on structural,
physical and quantum
chemical parameters

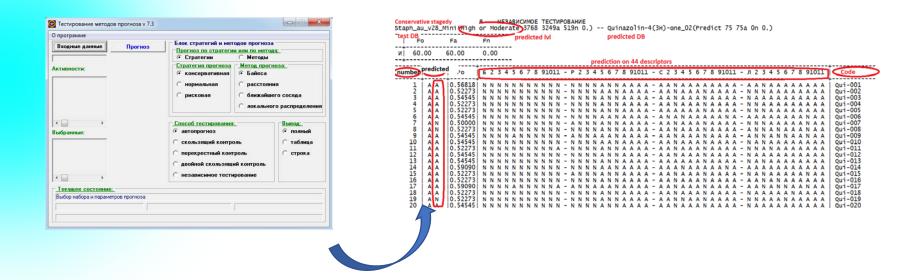
novel architecture of fully connected convolutional neural network based on correlation convolution of multiple docking energy spectra




convolutional feedforward neural network correlation based on multiple docking energies

Golubeva, A.V., Vassiliev, P.M., Perfilev, M.A., et al. (2024). XXII Mendeleev Congress on General and Applied Chemistry, 5, 372.

multidescriptor perceptron neural network model based on structural, physical and quantum chemical parameters



Model	Network architecture	Acc, % Sens, %		Spec, %	AUC ROC, %
Sampl Random-2000-HM	MLP 156-24-2 (Tanh)	93.5	64.3	98.2	89.2
Sampl 1-2000-HM	MLP 156-15-2 (Logistic)	93.6	74.1	96.8	91.3
Sampl 1-4000-HM	MLP 156-19-2 (Logistic)	93.3	70.0	97.1	93.1

The results of training various sampling and selecting optimal accuracy neural networks for a high or moderate (**HM**) level of antimicrobial activity in Statistica.

^{*}MLP- multilayer perceptron, k-m-2, k – input; m – hidden, 2 – output neurons. Tanh, Logistic - external activation functions. Acc – overall accuracy; Sens – sensitivity; Spec – specificity; AUC ROC – area under the ROC curve

assessment Testing73 of the Microcosm IT system

Compounds for synthesis were selected based on:

- energy of a fully connected convolutional correlation neural network W_i (from 266.5 to 446.9)
- presence HM level by the other three methods

 Generalization of predictive estimates allowed to identify 14 promising structures among 71 new derivatives of 4(3H)-quinazolinone with moderate antimicrobial activity against 5. aureus for further synthesis.

Code	V VHM > 266.5 VH > 446.9	Cons- HM	HM Quin_v05_Mdesc Staph_au_v28_M Desc_Pre			
Qui-055	279.0	Α	hm	hm	*Synthesize! *Synthesize!	
Qui-002	276.6	Α	hm	hm		
Qui-006	269.3	Α	hm	hm	*Synthesize! *Synthesize! *Synthesize! *Synthesize! *Synthesize! *Synthesize! *Synthesize!	
Qui-015	289.5	Α	hm	hm		
Qui-010	295.8	Α	hm	hm		
Qui-009	340.1	Α	hm	hm		
Qui-059	365.9	Α	hm	hm		
Qui-075	382.6	Α	hm	hm		
Qui-050	360.2	Α	hm	hm	*Synthesize!	
Qui-013	276.1	Α	hm	hm	*Synthesize!	
Qui-017	366.9	Α	hm	hm	*Synthesize!	
Qui-067	397.2	Α	hm	hm	*Synthesize!	
Qui-042	369.7	Α	hm	hm	*Synthesize!	
Qui-065	300.6	Α	hm	hm	*Synthesize!	
Qui-077	272.3	?	nhm	hm		
Qui-001	277.9	Α	nhm	hm		
Qui-051	280.7	N	nhm	hm		

Consensus combination of several prediction methods enabled a directed searching promising derivatives of 4(3H)-quinazolinone with antimicrobial activity against S. aureus for further synthesis

Thanks to the team of authors P.M. Vassiliev, A.A. Ozerov, M.A. Perfilev, A.N. Kochetkov

This study was supported in the framework of the state assignment of the Ministry of Health of the Russian Federation No. 23022400009-9

Thanks for your attention!

Arina V. Golubeva arina_arina_golubeva@mail.ru