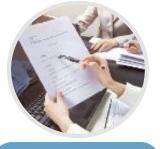


National
Research

Mordovia
State
University

FROM IN SILICO DESIGN TO EXPERIMENTAL IMPLEMENTATION:

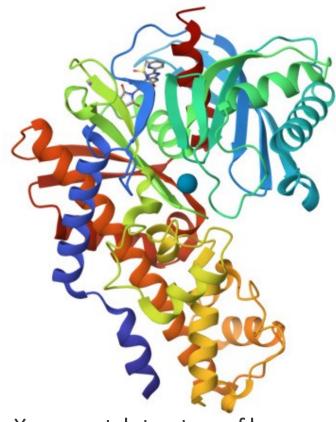

DEVELOPMENT OF A NOVEL GLUCOKINASE ACTIVATOR

DIABETES

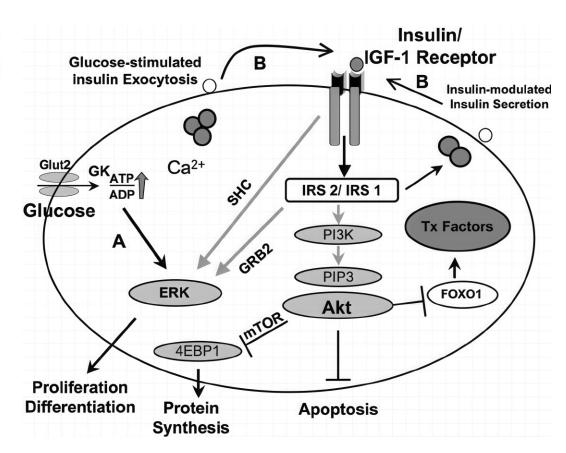
Type 2 diabetes is a prevalent disorder characterized by dysregulation of glucose homeostasis

Characterized

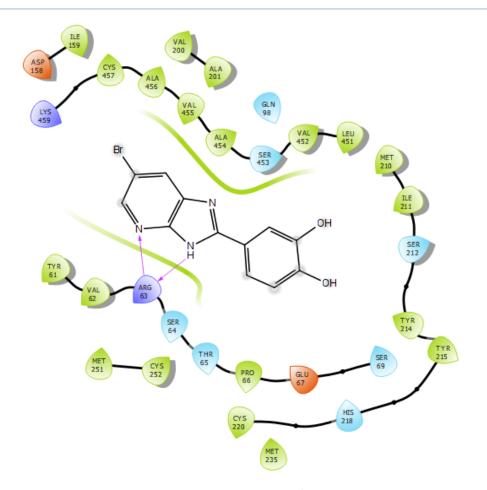
chronic form, disruption of all types of metabolism

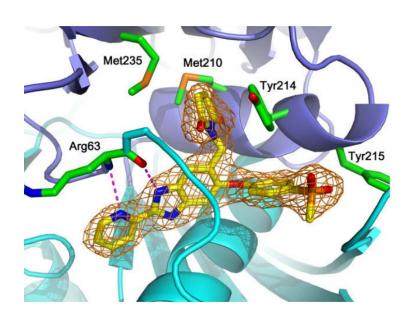

At risk

- Those leading a sedentary lifestyle
- over 45 years of age
- with a genetic predisposition



Glimepiride




X-ray crystal structure of human glucokinase crystallized in complex with a small molecule glucokinase activator (PDB ID: 3H1V)

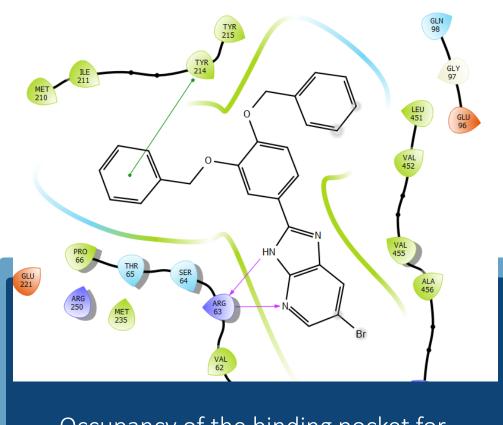
Compound 1

GK activator bound to Glucokinase.

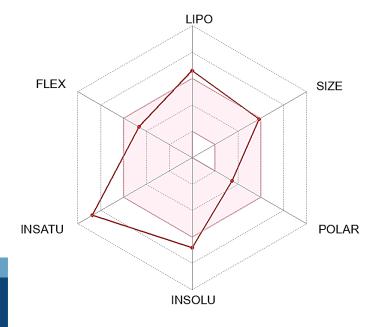
Takahashi, K (2009) Bioorg Med Chem 17: 7042-7051

Molecular docking results

	Ligands	XP- GSCORE		Ligands	XP- GSCORE
1	Br H OH OH	-9.25	2c	Br N O-Et	-9.60
2a	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$	-9.10	2d	Br N O-Ph O-Ph	-9.10
2b	$Br \overset{H}{\underset{N}{\bigvee}} \overset{O}{\underset{N}{\bigvee}} O$	-9.40	2e	Br N O-CH ₂ -Ph O-CH ₂ -Ph	-12.23



Molecular docking results


	Ligands	XP- GSCORE		Ligands	XP- GSCORE
3a	HO N OH OH	-9.3	3d	O N N N O	-9.1
3b	O N N O	-9.7	3e	O N N N O	-8.5
3c	O N N O	-9.5	3f	Ph O H OH OH	-9.7

The binding pocket occupancy and ADME parameters

Occupancy of the binding pocket for compound 2e

The colored zone is the suitable physicochemical space for oral bioavailability. LIPO(Lipophility): -0.7 < XLOGP3 < +5.0 SIZE: 150g/mol < MW < 500g/mol POLAR(Polarity): 20Ų < TPSA < 130Ų INSOLU(Insolubility): -6 < Log S (ESOL) < 0 INSATU(Insaturation): 0.25 < Fraction Csp3 < 1 FLEX(Flexibility): 0 < Num. rotatable bonds < 9

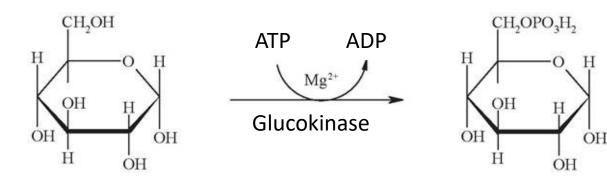
Four-step synthesis of compound

(2e)

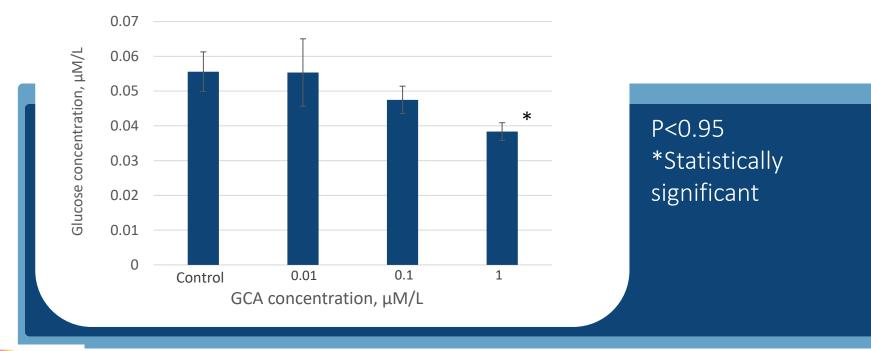
$$\begin{array}{c|c} & & Br_2 \\ \hline N & NH_2 & \hline CH_3CN, \\ & CH_2Cl_2, \\ \hline 9 & & 10(41\%) \\ \end{array}$$

Br
$$NO_{2}$$
 NO_{2} NO_{2}

Br
$$NO_2$$
 Fe, HCl CH_3OH , H_2O NH_2 $12(59\%)$



Four-step synthesis of compound (2e) and its hydrochloride salt (16)


OH + 2
$$CI$$
 K_2CO_3 CH_3CN , CH_3CN CH_3CN CH_2 -Ph 13 14 15(65%)

Br
$$H$$
 $O-CH_2-Ph$ HCI $EtOH$ N N CI $O-CH_2-Ph$ $O-CH_2-$

Activity determination was performed according to the Long method, based on the enzymatic phosphorylation of glucose followed by colorimetric determination of residual glucose using the Somogyi–Nelson reaction

Thank you for your attention!