









### Next generation computational bloodbrain barrier models

Dr Christian Jorgensen

BCADD-25, 20<sup>th</sup> Oct 2025

Senior Lecturer

School of Medicine, Pharmacy and Biomedical Sciences

University of Portsmouth

Christian.jorgensen@port.ac.uk

#### **Aims**

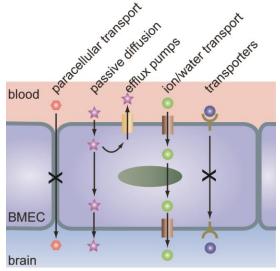
- Build atomic-detail models of brain endothelial cell membranes
- Calculate transversal permeability
- Calculate transversal free-energies



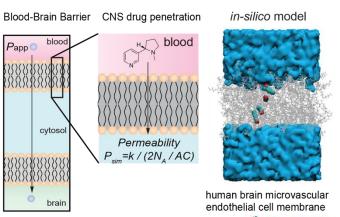




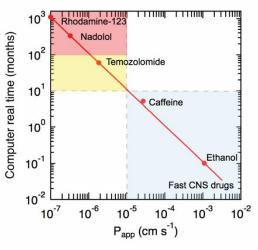



Searson MBU (Johns Hopkins) (KCL)









#### **Blood brain barrier (BBB)**



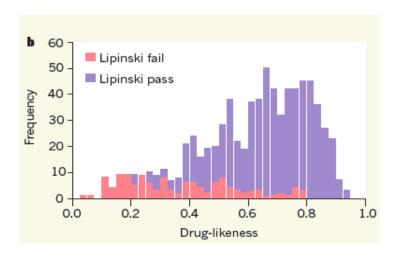
#### Human Brain Microvascular Endothelial Cell Models



## Challenge of calculating CNS passive permeability



Ethanol(10<sup>-3</sup> cm s<sup>-1</sup>) Caffeine (10<sup>-5</sup> cm s<sup>-1</sup>) Temozolomide (10<sup>-6</sup> cm s<sup>-1</sup>) Doxorubicin (10<sup>-7</sup> cm s<sup>-1</sup>)


#### BBB: 98% rejection rate of the drug space (1060 molecules)

- C. Jorgensen, M. B. Ulmschneider, P. C. Searson, ACS Omega, 2022, 7
- Y. Wang, E. Gallagher, C. Jorgensen, E. P. Troendle, D. Hu, P. C. Searson, M. B. Ulmschneider, Sci. Rep., 2019, 9
- C. Jorgensen, E. P. Troendle, J. P. Ulmschneider, P. C. Searson, M. B. Ulmschneider, JCAMD, 2023, 37
- C. Jorgensen, C. et al. JCIM, 2025, 65

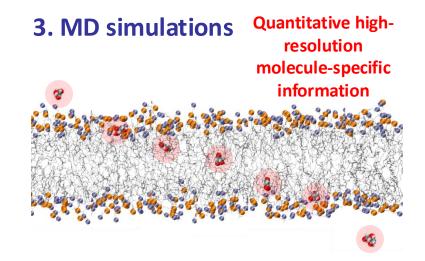
#### 1. Lipinski's Rule of Five (Pfizer)

- MW < 500 Da
- Dipole < 5 D
- $\log P_{oct} < 5$
- HB acceptor < 10
- HB donor < 5

C. A. Lipinski et al., Adv. Drug Deliv. Rev. 1997, 23, 3-25



Liu et al., *Drug Metab. & Disp.*, **2004**, 32, 132-139 Martins et al., *JCIM.*, **2012**, 52, 1686-1697 Jorgensen *et al. JCIM*, **2025**, *65* Huang, *et al. Sci. Rep.*, **2024**, 14, 9 (1), 15844. Jia & Sosso. *JCIM*, **2024**.


#### 2. Al models & Bayesian pass/fail

Bayesian Pass/fail model parameters:

- Partitioning coefficent (log P<sub>ow</sub>)
- Van der Waals surface area
- Polar surface area
- Lipinski refinement (more parameters)

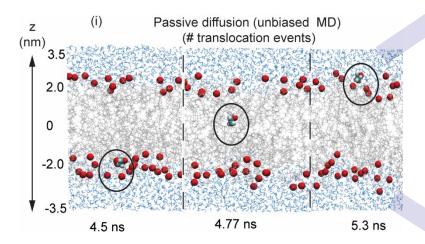
Supervised AI ML models for BBB+ / BBB-

**BBB+** drugs cross. **BBB-** drugs do not cross



Ethanol

#### **Transition-based (flux-based) permeability**


### Flux equations $I = P \cdot \Delta C$

$$P = \frac{r}{AC}$$

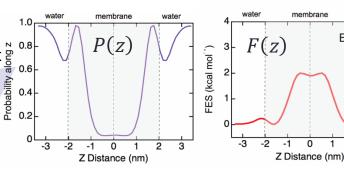
**Flux** (mol m<sup>-2</sup>s<sup>-1</sup>): the net number of particles *n* per unit area diffusing across a membrane with cross-section area A. Can be unidirectional or bidirectional

Permeability (cm s<sup>-1</sup>): Displacement through membrane per unit time.

#### 1. Passive diffusion



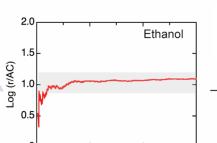
#### **Direction of flux**


- Simulations capture a bidirectional flux
   #<sub>tot</sub> = #<sub>up</sub> + #<sub>down</sub>
- · Experimental transwell assays capture unidirectional flux
- Total flux from simulation is divided by 2 to compare to experiment
- We assume that the transport via the cytosol is fast compared to transport across the cell membrane and negligible

#### **Challenges:**

Timescale renders this inaccessible for all but fastest molecules

#### 2. Energetics


$$F(z) = -kT \log (P(z))$$



#### 3. Transport kinetics

Rapid permeability screening of toxins and antidotes

300



Time (ns)

200

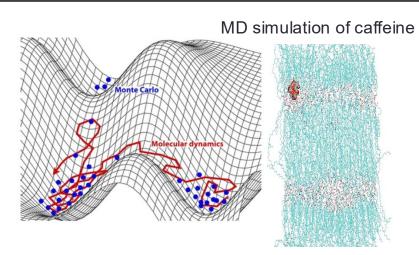
100

Establish steady-state

(iii) Calculate permeability

$$r = \frac{k}{N_A} = \frac{\#}{t \cdot N_A}$$
 (1)

$$P_{sim} = \frac{r}{2AC}$$
 (2)


- #: number of permeation events
- k: rate constant (ns-1)
- r. molar rate constant (mol ns<sup>-1</sup>)
- A: Area of lipid patch (nm2)
- C: Concentration solute (mol dm<sup>-3</sup>)
- P: permeability (cm s<sup>-1</sup>)

#### **Molecular Dynamics simulations**

2. Force field

F = -dU/dr

- ➤ We can model atoms as hard spheres connected by springs (Lewitt, Warshell 1975) together with electrostatic/dispersion components.
- This turned out to be much more accurate than we thought.
- ➤ MD simulations generate trajectories of a system via forward time propagation of Newton's 2<sup>nd</sup> law.



#### 1. Workflow

 $t + \Delta t$ 

 $x(t + \Delta t)$ 

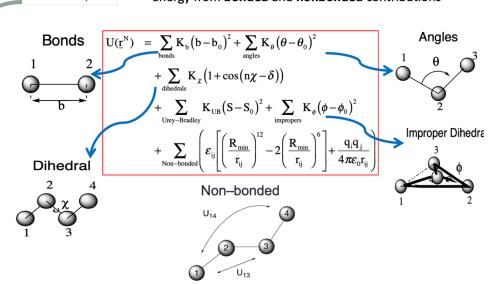
 $v(t + \Delta t)$ 

#### Molecular Dynamics

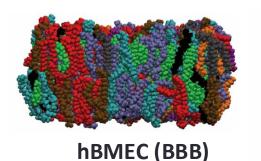
1. Assign velocities to all atoms

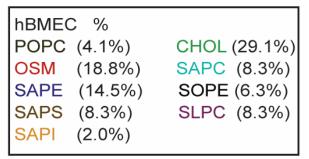
2. Calculate forces on all atoms

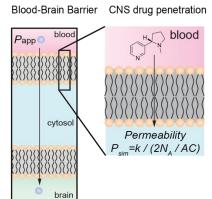
3. Use Newton's second law to calculate acceleration on each atom


F = ma

4. Calculate velocities for the next timestep

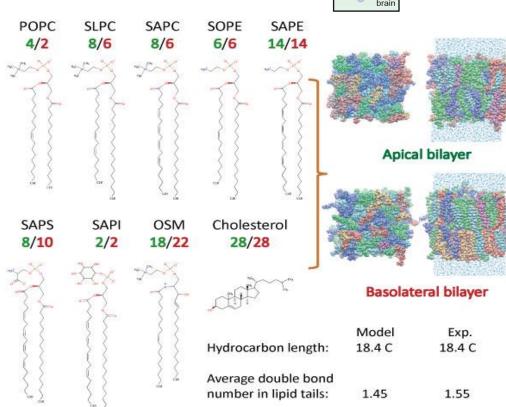

5. Use change of velocities to get coordinates for next timestep


6. Go to step 2.


Input the force into Newton's second law to update positions and velocities by generating the system potential energy from **bonded** and **nonbonded** contributions



Levitt, Warshel: "Computer simulation of protein folding" *Nature*, **1975**, 253 (5494), 694-698. Hollingsworth, Dror: "Molecular dynamics simulations for all", *Neuron*, **2019**, 99(6)



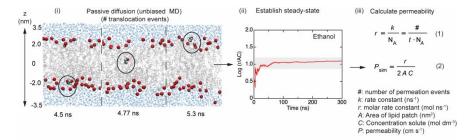





Model reproduces experimental features:

- Hydrocarbon length
- Average double bond number in lipid tails

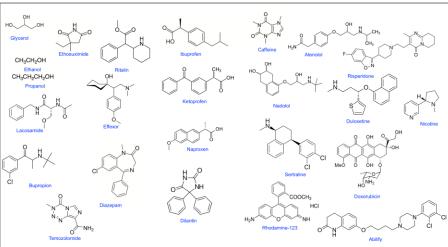



**Apical** 

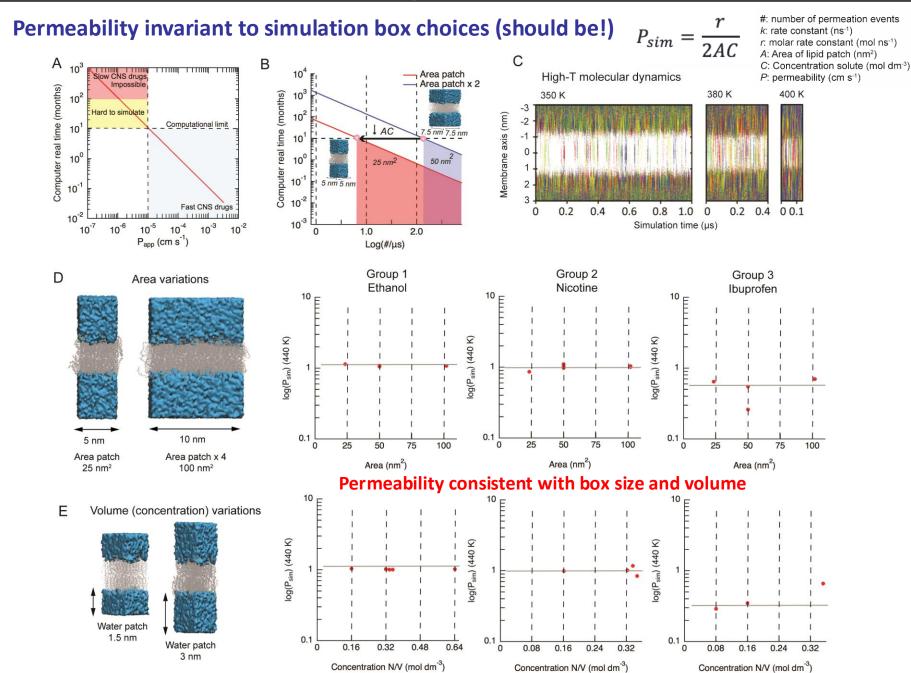
**Basolateral** 

Lipid composition: Bénistant et al. J. Lipid Res., 1995, 36

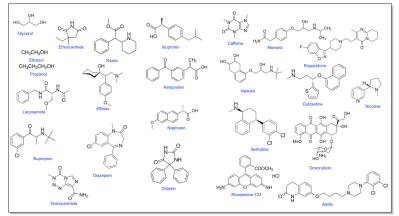
Y. Wang, E. Gallagher, C. Jorgensen, E. P. Troendle, D. Hu, P. C. Searson, M. B. Ulmschneider, Sci. Rep., 2019, 9 C. Jorgensen, M. B. Ulmschneider, P. C. Searson, ACS Omega, 2022, 7


#### 1. Flux-based permeabilities workflow

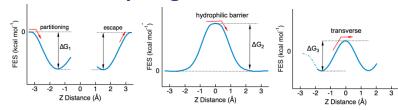



Library spans experimental permeability **10**-7 **cm s**-1 to **10**-3 **cm s**-1 Slow Fast

#### **Experimental benchmark data (N = 24)**

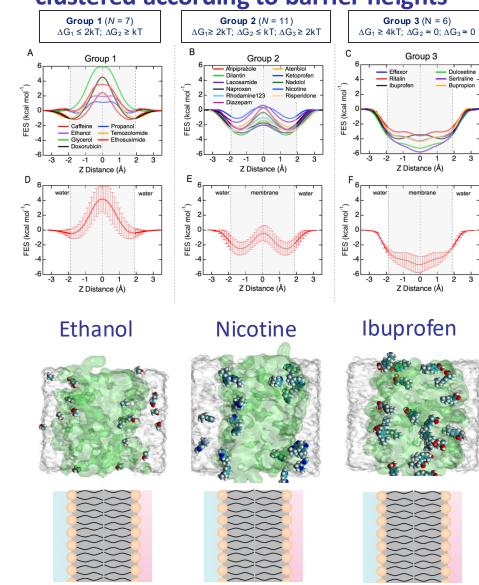

#### 2. Representative CNS drug library




| Molecule     | MW<br>(g mol <sup>-1</sup> ) | $H_{donor}$ | H <sub>accept</sub> | Log P | DP<br>(debye) | P <sub>app</sub> (cm s <sup>-1</sup> ) | P <sub>app</sub> Reference     | Cell line (2D) or<br>method (3D) |
|--------------|------------------------------|-------------|---------------------|-------|---------------|----------------------------------------|--------------------------------|----------------------------------|
| Glycerol     | 92.09                        | 3           | 3                   | -1.8  | 2.62          | 9.50 x 10 <sup>-6</sup>                | <sup>87</sup> [Shah 1989]      | BMEC                             |
| Temozolomide | 194.1                        | 1           | 5                   | 0.4   | 6.10          | 1.86 x 10 <sup>-6</sup>                | 88 [Avdeef 2012]               | Brain perf (3D)                  |
| Caffeine     | 194.2                        | 0           | 3                   | -0.07 | 3.64          | 2.10 x 10 <sup>-5</sup>                | IH                             | MDCK                             |
| Ethanol      | 46.1                         | 1           | 1                   | -0.31 | 1.69          | 1.10 x 10 <sup>-3</sup>                | <sup>53</sup> [Brahm 1983]     | RBC                              |
| Propanol     | 60.1                         | 1           | 1                   | 0.05  | 1.68          | 3.30 x 10 <sup>-3</sup>                | <sup>53</sup> [Brahm 1983]     | RBC                              |
| Doxorubicin  | 543.5                        | 6           | 12                  | 1.27  | 9.12          | 1.00 x 10 <sup>-7</sup>                | <sup>89</sup> [Hellinger 2012] | Caco-2 / MDCK                    |
| Ethosuximide | 141.2                        | 1           | 2                   | 0.38  | 1.72          | 9.00 x 10 <sup>-6</sup>                | 90 [Summerfield 2007]          | MDCK                             |
| Atenolol     | 266.3                        | 3           | 4                   | 0.16  | 5.00          | 1.30 x 10 <sup>-6</sup>                | <sup>91</sup> [Adson 1995]     | Caco-2                           |
| Diazepam     | 284.7                        | 0           | 2                   | 2.82  | 2.65          | 4.60 x 10 <sup>-5</sup>                | 90 [Summerfield 2007]          | MDCK                             |
| Nadolol      | 309.4                        | 4           | 5                   | 0.81  | 5.10          | 3.30 x 10 <sup>-7</sup>                | <sup>92</sup> [Yamashita 2000] | Caco-2                           |
| Lacosamide   | 250.3                        | 2           | 3                   | 0.73  | 1.90          | 1.60 x 10 <sup>-5</sup>                | <sup>93</sup> [Zhang 2013]     | Caco-2                           |
| Risperdal    | 410.4                        | 0           | 6                   | 3.49  | 5.45          | 3.00 x 10 <sup>-5</sup>                | 90 [Summerfield 2007]          | MDCK                             |
| Rhodamine123 | 380.8                        | 2           | 5                   | 1.06  | 6.11          | 0.80 x 10 <sup>-7</sup>                | <sup>94</sup> [Katt 2019]      | iPSC                             |
| Dilantin     | 252.3                        | 2           | 2                   | 2.47  | 2.73          | 2.70 x 10 <sup>-5</sup>                | 90 [Summerfield 2007]          | MDCK                             |
| Ketoprofen   | 254.3                        | 1           | 3                   | 3.12  | 4.44          | 8.00 x 10 <sup>-5</sup>                | <sup>95</sup> [Sun 2002]       | Caco-2                           |
| Naproxen     | 230.3                        | 1           | 3                   | 3.18  | 2.25          | 3.90 x 10 <sup>-5</sup>                | <sup>96</sup> [Pade 1998]      | Caco-2                           |
| Nicotine     | 162.2                        | 0           | 2                   | 1.17  | 1.64          | 1.78 x 10 <sup>-4</sup>                | <sup>97</sup> [Garberg 2005]   | Caco-2 / MDCK                    |
| Ibuprofen    | 206.3                        | 1           | 2                   | 3.97  | 1.64          | 2.70 x 10 <sup>-5</sup>                | IH                             | MDCK                             |
| Effexor      | 277.0                        | 1           | 3                   | 3.2   | 3.33          | 6.00 x 10 <sup>-5</sup>                | <sup>89</sup> [Hellinger 2012] | Caco-2 / MDCK                    |
| Ritalin      | 233.1                        | 1           | 3                   | 2.25  | 2.13          | 2.47 x 10 <sup>-5</sup>                | 98 [Yang 2016]                 | MDCK                             |
| Sertraline   | 306.2                        | 1           | 1                   | 5.10  | 3.86          | 2.1 x 10 <sup>-6</sup>                 | 90 [Summerfield 2007]          | MDCK                             |
| Duloxetine   | 297.4                        | 1           | 3                   | 4.00  | 2.18          | 1.66 x 10 <sup>-5</sup>                | 89 [Hellinger 2012]            | Caco-2 / MDCK                    |
| Bupropion    | 239.7                        | 2           | 4                   | 3.60  | 1.15          | 4.75 x 10 <sup>-5</sup>                | 90 [Summerfield 2007]          | MDCK                             |



#### Representative CNS drug library



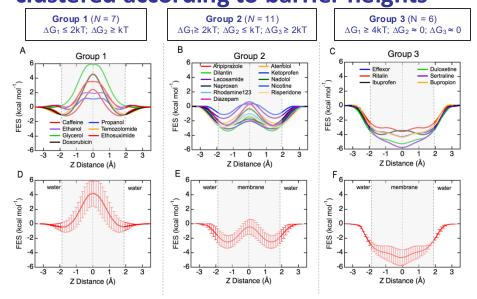

#### **Barrier topologies**



- We introduce terminology to classify distinct types of free-energy barriers
- $\Delta G_1$ : an escape free-energy barrier associated with partitioning into the membrane center
- $\Delta G_2$ : barrier associated with polar, hydrophilic molecules crossing the BBB
- ΔG<sub>3</sub>: barrier from a double-well, transverse freeenergy surface

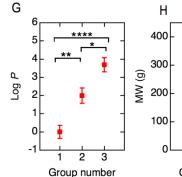
Free-energies of an *N* = 24 compound library clustered according to barrier heights

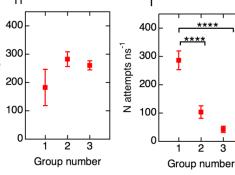


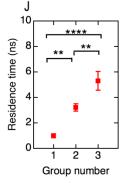

#### Validating that the groups are statistically significant

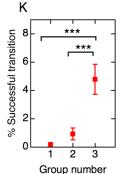
Input parameters (chemical)

Input parameters (simulation)


- LogP: n-octanol and water partition coefficient
- MW: Molecular weight (g)
  - PSA: Polar surface area
- DP: Total dipole moment (Debye)
- HB donors: h-bond donors in a molecule
- HB acceptor: h-bond acceptors in a molecule
- Six membered rings: Number of 6-memb rings
- Five membered rings: Number of 5-memb rings
- Residence time: Average time inside bilayer
- Attempt time: Average time inside bilayer for failed trans
- # Succesful transitions: Number of transitions
- # Attempts: Number of failed transitions
- k Rate constant: # Transitions / simulation time (1/ns)
- Permeability: (cm/s) at 440 K
- ΔG₁: Lipophilic escape barrier
- $\Delta G_2$ : Polar drug crossing barrier
- ∆G<sub>3</sub>: Transversal crossing barrier


#### Free-energies of an N = 24 compound library clustered according to barrier heights





Advantage of workflow: ~ 1 day on a single NVIDIA GPU → possible to screen ~100 compounds per month for a typical cluster

#### **Parameter output**



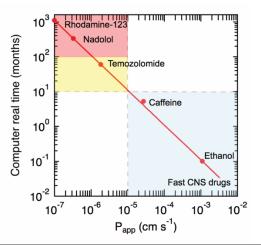






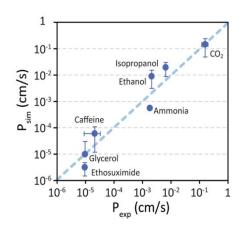
#### Take-home findings

- LogP discretizes across
- the three groups
- MW is not a good descriptor
- (as per Lipinski's rule) for **CNS** penetration


#### The big picture: BBB permeability models

#### **Experimental permeability**

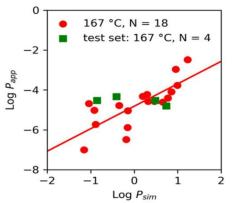
- Not generally routine
- Requires either in vitro proxy assays such as Caco-2 or PAMPA for BBB permeation. Sometime even from red > blood cells (not ideal)
- In-house BBB model permeability with fluorescence tracking (JHU)


#### *In silico* permeability

- Not routine for the BBB
- Can use unbiased simulations for drugs with  $P_{\rm app} > 10^{-4}$  cm/s.
- For  $P_{\rm app}$  < 10<sup>-5</sup> cm/s we need enhanced sampling techniques as unbiased MD takes between **10**<sup>2</sup>-**10**<sup>3</sup> **months** on a single GPU.



#### Proposed development: Enhanced sampling approaches for BBB permeability


# 1. Kramers-based Arrhenius model Arrhenius extrapolation to 310 K with a correction in non-linear regime. Not routine.

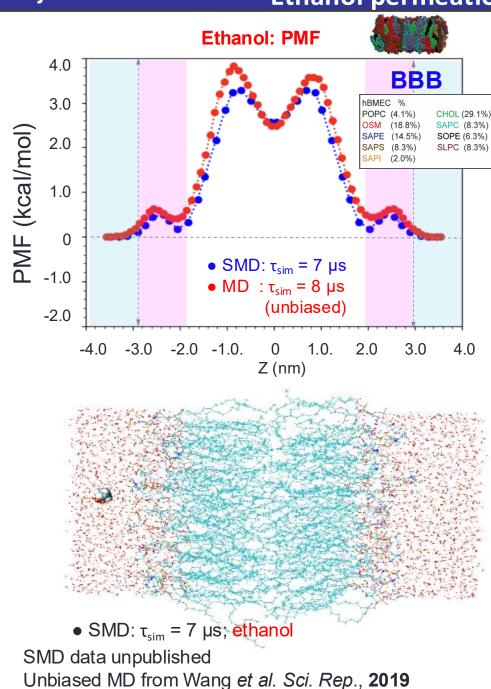


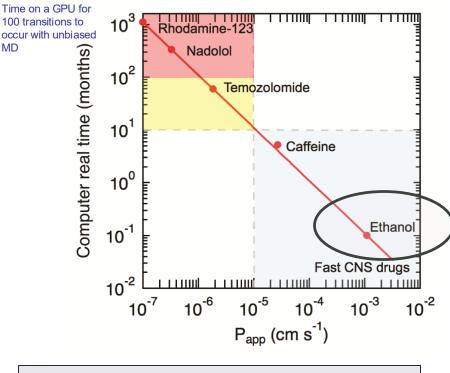
Wang et al. Sci. Rep., 2019

#### 2. Regression based models

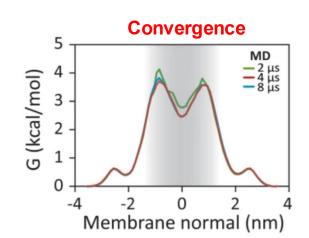
Regression with high-T data. Accuracy to ~1-~2 OM on one GPU. Routine ranking of >10<sup>1</sup> molecules is now routine

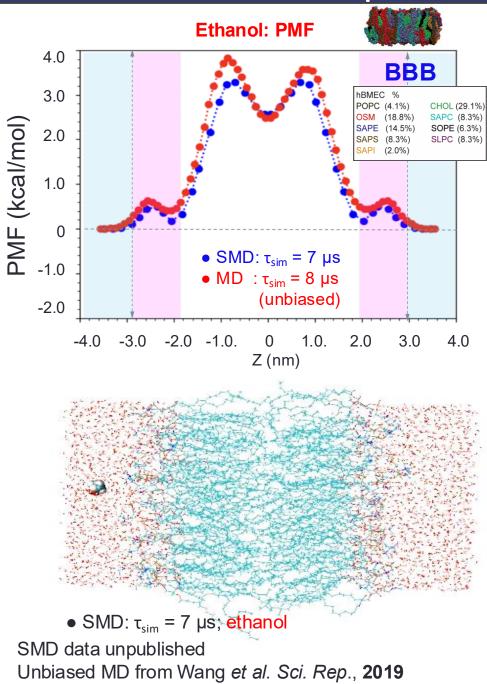


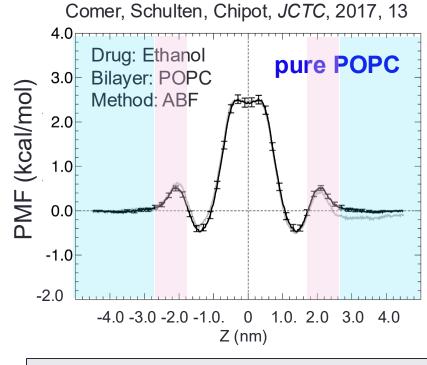

Jorgensen et al. JCAMD, 2023 Jorgensen et al, ACS Omega, 2022


## 3. Permeability via the Green-Kubo equations with steered MD

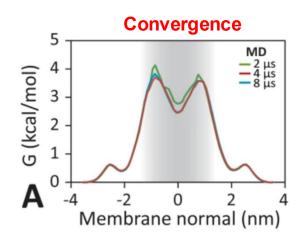
$$\frac{1}{P} = \int_{-d}^{d} \frac{\exp(\beta \Delta G(z))}{D_{z}(z)} dz$$

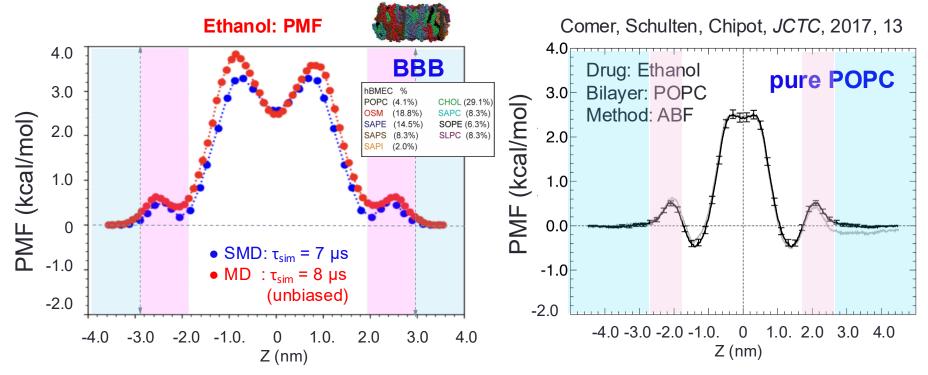

$$D_{z}(z) = \frac{\left(RT\right)^{2}}{\int_{0}^{\infty} dt \left\langle \Delta F_{z}(z,t) \Delta F_{z}(z,0) \right\rangle}$$


Jorgensen et al. JCIM, 2025







Pure POPC bilayer thickness: ~3.75 nm Mammalian bilayer thickness: ~4.70 nm

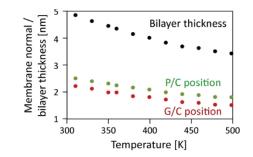







Pure POPC bilayer thickness: ~3.75 nm Mammalian bilayer thickness: ~4.70 nm



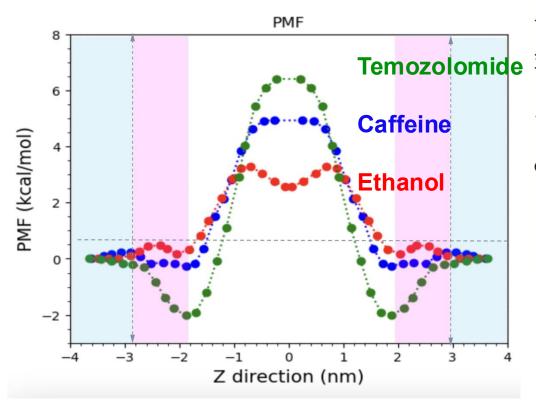


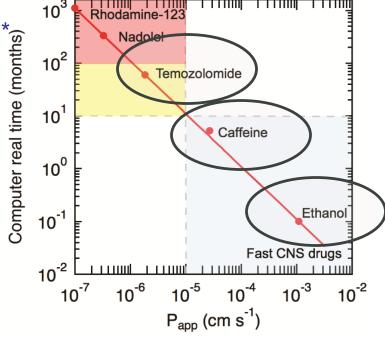

Pure POPC bilayer thickness: ~3.7 nm [1] to ~3.8 nm [2, 3, 5]

Mammalian bilayer thickness: ~4.70 nm [2]

BBB bilayer thickness: ~4.75 nm [6]

The mammalian lipid bilayer reaches maximal bilayer thickness due to the condensation effect by the predominance of cholesterol [4]





- [1] Gullingsrud, J., Schulten, K., Biophysical journal, 2004, 86 (6)
- [2] Kucerka, N., Tristram-Nagle, S., Nagle, J.F., *J Membr Biol*, **2005**, 208 (3)
- [3] Skjevik, A., Madej, B.D., Dickson C.J., Teigen K., Walker R.C., Gould I.R. Chem Commun, 2015, 51(21)
- [4] Shahane, G., et al. Journal of molecular modeling, 2019, 25
- [5] Pöhnl, M., Trollmann, M. F., & Böckmann, R. A. Nat. Comms, 2023, 14(1)
- [6] Y. Wang, E. Gallagher, C. Jorgensen, E. P. Troendle, D. Hu, P. C. Searson, M. B. Ulmschneider, Sci. Rep., 2019, 9

#### SMD-Green Kubo method: Expanding the approach

3 SMD simulations

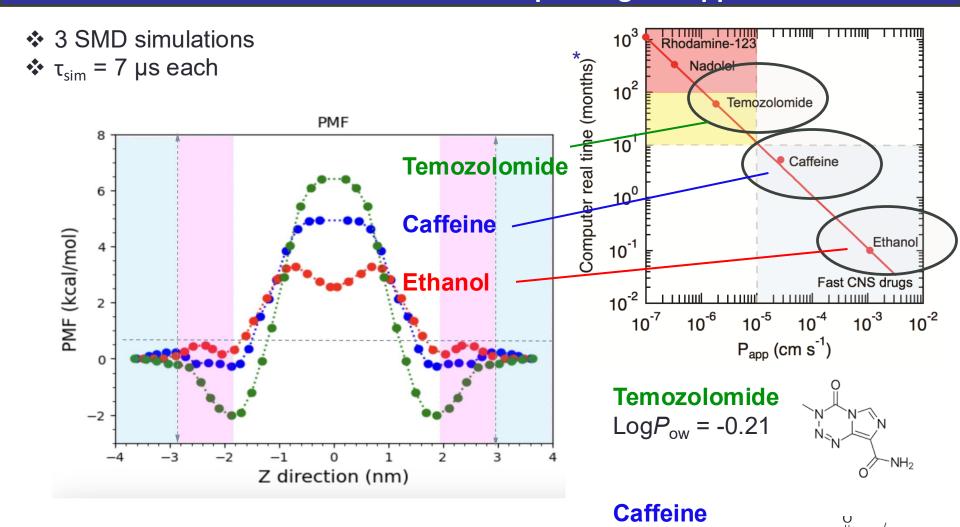
$$\star \tau_{sim} = 7 \mu s each$$





#### **Temozolomide**

$$Log P_{ow} = -0.21$$


#### **Caffeine**

$$Log P_{ow} = -0.07$$

\*Time on a GPU for 100 transitions to occur with unbiased MD

#### Ethanol

$$Log P_{ow} = -0.31$$



\*Time on a GPU for 100 transitions to occur with unbiased MD



#### **Ethanol**

$$Log P_{ow} = -0.31$$

 $Log P_{ow} = -0.07$ 

#### **Motivation**

- ➤ P-glycoprotein is a protective pump that keeps out exogenous chemicals from the brain. It is the leading cause of multidrug resistance to chemotherapeutics crossing the BBB
- P-gp is non-specific (over 300 known substrates). But WHY?





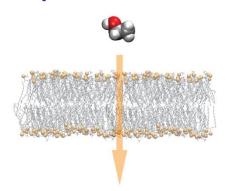


Searson

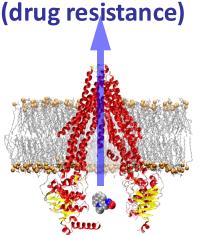
Schiøtt

#### Computing time







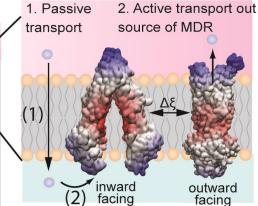




AARHUS UNIVERSITY

1. Passive CNS penetration



2. Efflux out (drug resistance)

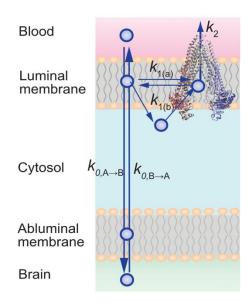



BMEC Cytosol efflux pump

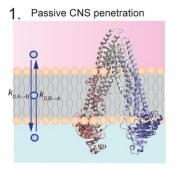
Cytosol pump

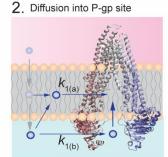
BMEC Cytosol brain

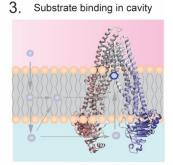
Blood-Brain Barrier



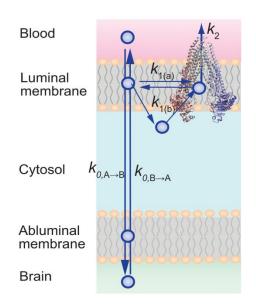

Efflux of cytoxins by P-gp


human brain microvascular endothelial cell membrane

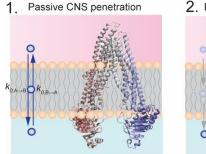

- C. Jorgensen, M. B. Ulmscheider, P. C. Searson, J. Med. Chem., 2023, 66
- C. Jorgensen et al. JCIM, 2025, 65

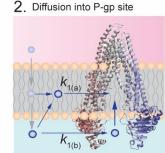

#### 1. Kinetic model

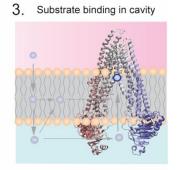



- ▶ Understand substrate interaction with P-gp in terms of rate constants  $k_{0,}$   $k_{1(a)}$  and  $k_{1(b)}$
- Use simulations to estimate the three k values to mathematically understand efflux



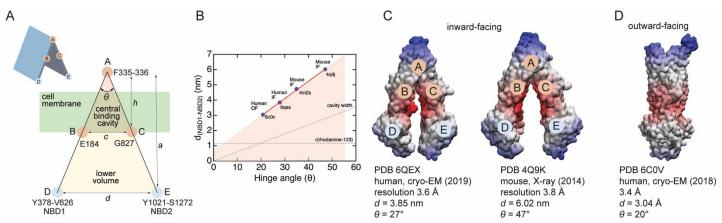


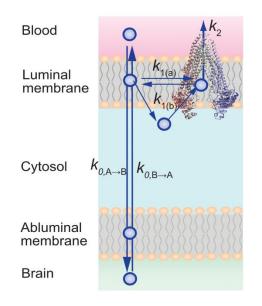


#### 1. Kinetic model



- ▶ Understand substrate interaction with P-gp in terms of rate constants  $k_{0, k_{1(a)}}$  and  $k_{1(b)}$
- Use simulations to estimate the three k values to mathematically understand efflux

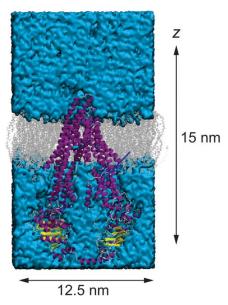





#### 2. Geometric model

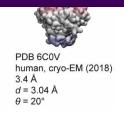
Understand P-gp conformational dynamics




#### 1. Kinetic model



- Understand substrate interaction with P-gp in terms of rate constants  $k_{0}$ ,  $k_{1(a)}$  and  $k_{1(b)}$
- Use simulations to estimate the three *k* values to mathematically understand efflux

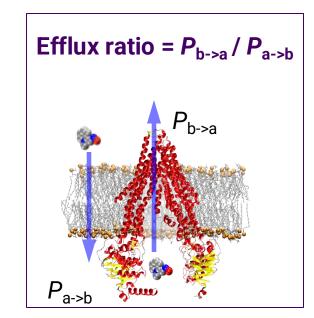

#### 3. Simulation model



2. Geometric model

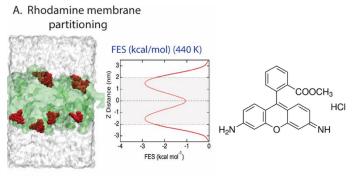
Understand P-gp conformational В inward-facing F335-336 G827 50 PDB 6QEX PDB 4Q9K lower Hinge angle  $(\theta)$ human, cryo-EM (2019 mouse, X-ray (2014) volume resolution 3.6 Å resolution 3.8 Å Y378-V626 Y1021-S1272 d = 6.02 nmd = 3.85 nm $\theta = 47^{\circ}$ 

We believe this structure gives us best chance to observe spontaneous entry on tractable timescales

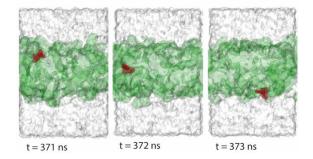



#### Rhodamine-123

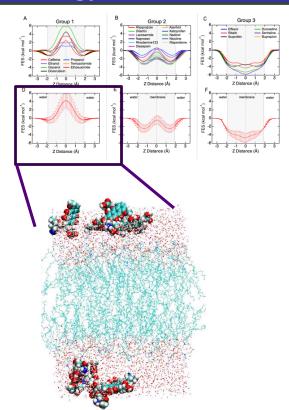
 $P_{\rm app} \sim 1 \times 10^{-7} {\rm cm \ s^{-1}}$  (slow transport) Efflux ratio  $\sim 5$  (i.e. P-gp substrate)


Potent third-generation inhibitor  $k_d = 5.1 \text{ nM}$ 

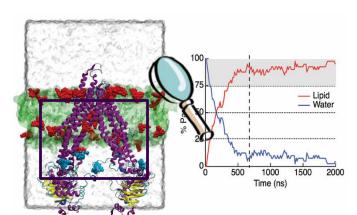
- Direct substrate entry into P-gp has never been observed experimentally or in a simulation
- ➤ 1st gen. inhibitors have been observed crystallographically bound in P-gp central binding cavity but the mechanism of inhibition is disputed




#### Results (1): Substrate interaction with P-gp


#### (1) Passive diffusion $k_0$

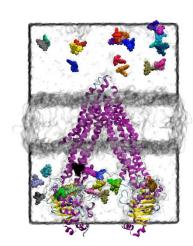


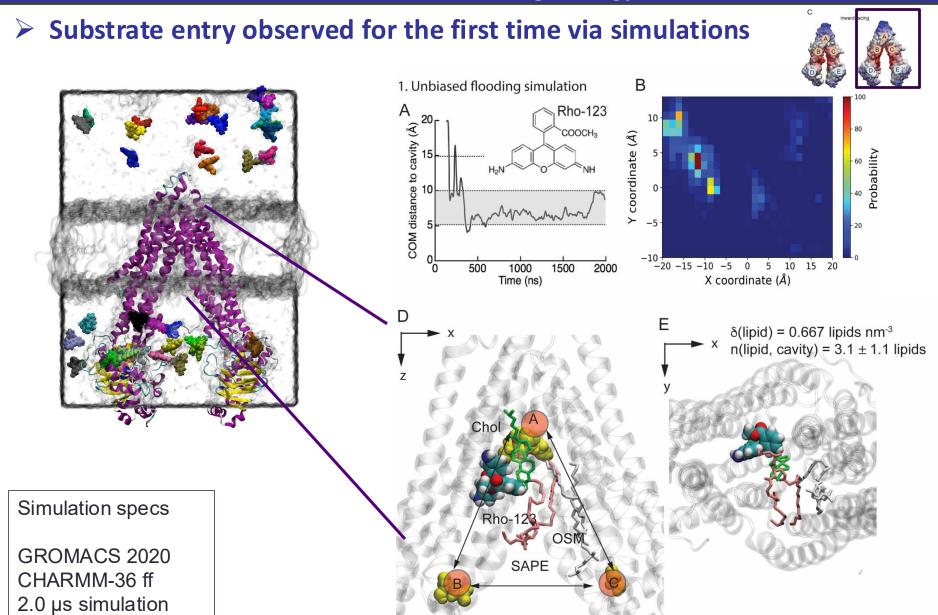

B. Rhodamine passive translocation (440 K)



- The free energy surface for partitioning of rhodamine at 440 K has an energy maximum at the hydrophobic core of the bilayer (*z* = 0.0 nm) and energy minima (with respect to bulk solution) in the polar headgroup regions (*z* = ± 1.7 nm)
- Consistent with the observation that rhodamine-123 accumulates in mitochondrial membranes.




#### (2) Flooding simulation for $k_1$ of rhodamine in a P-gp BBB system

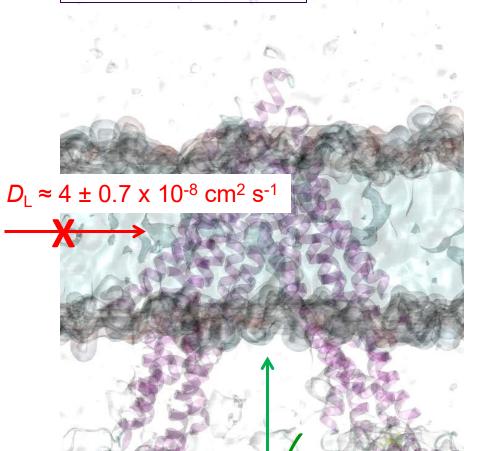



80% of rhodamine-123 molecules accumulate in the membrane

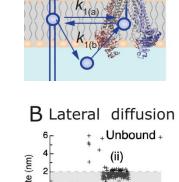
Simulation specs

GROMACS 2020 CHARMM-36 ff 2.0 µs simulation 40 rhodamine in box






40 rhodamine in box

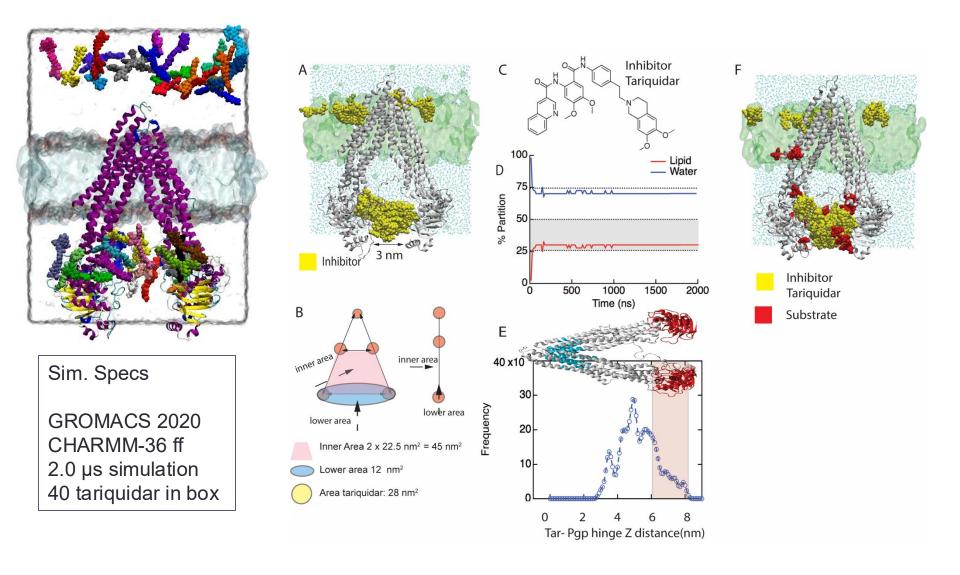

#### **Substrate binding to P-gp**

 $\succ k_1$  estimation: Lateral  $(k_{1(a)})$  vs. aqueous  $(k_{1(b)})$  pathways

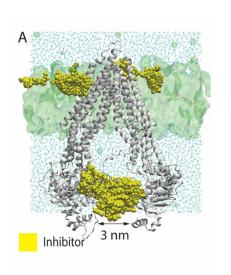
~100 days on a supercomputer



Lateral diffusion mechanism  $k_{1(a)}$ : Lateral diffusion constant,  $D_L$ , of a rhodamine in the minimum free-energy well was estimated from least-squares fit of the mean-square displacement (MSD) as  $D_1 \approx 4 \pm 0.7 \times 10^{-8} \text{ cm}^2 \text{ s}^{-1}$ 

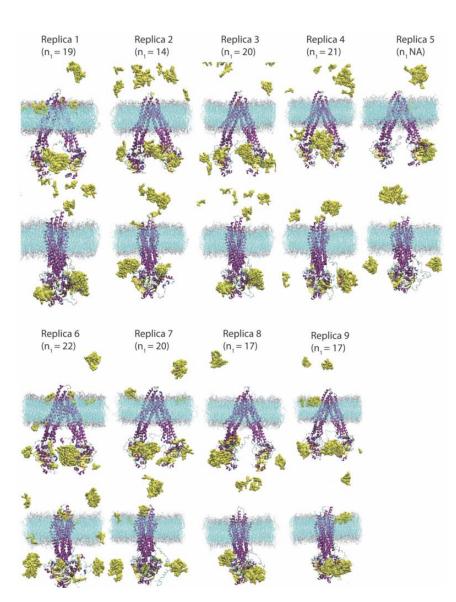



Time (ns)

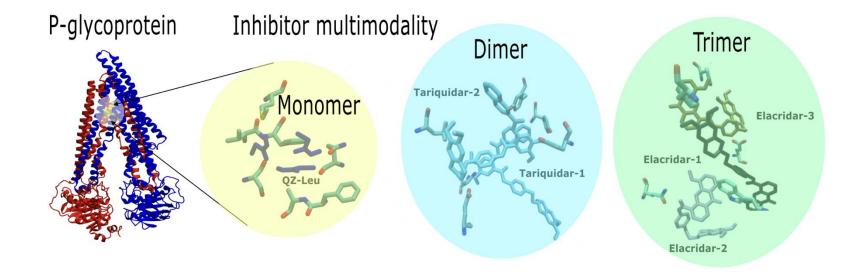

- Aqueous diffusion mechanism k<sub>1(b)</sub>: From MSD of rhodamine-123 diffusion in bulk: D ≈ 4.5 x 10<sup>-6</sup> cm<sup>2</sup>s<sup>-1</sup>
- Conclusion: Aqueous pathway much more likely. We estimate only 5.6 % rhodamine molecules crossing the membrane laterally into the P-gp cavity.

 $D \approx 4.5 \times 10^{-6} \text{ cm}^2\text{s}^{-1}$ 

#### Inhibition of P-gp by tariquidar via MD simulation




#### Replicates suggest tariquidar aggregation (19 ± 1) is an early stage in the inhibition mechanism




Sim. Specs

GROMACS 2020 CHARMM-36 ff 2.0 µs simulation 40 tariquidar in box



Replicates suggest tariquidar aggregation (19 ± 1) is an early stage in the inhibition mechanism



#### Special Issue

Simulation and Artificial Intelligence Method Development for Complex Membrane Transport

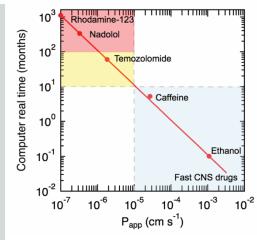
#### **Guest Editor**

Dr. Christian Jorgensen

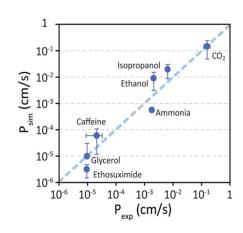
#### **Deadline**

10 May 2026





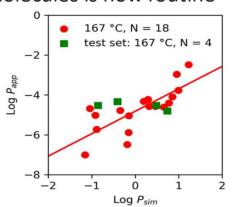



#### **Verdict: BBB permeability models**

- Kramers-based methodology (1) yields closest agreement to experiment but is a costly procedure.
- Linear regression analysis (2) yields sub 1 OM agreement. Larger library size needs to be considered
- ❖ Bayesian post-hoc corrected values from Adaptive Biasing Force, as well as Steered MD permeabilities from Green-Kubo (3) eqns. yield ~2 OM faster perm. wrt P<sub>app</sub>




# 1. Kramers-based Arrhenius model Arrhenius extrapolation to 310 K with a correction in non-linear regime. Not routine.



Wang et al. Sci. Rep., 2019

#### 2. Regression based models

Regression with high-T data. Accuracy to ~1-~2 OM on one GPU. Routine ranking of >10<sup>1</sup> molecules is now routine



Jorgensen et al. JCAMD, 2023 Jorgensen et al, ACS Omega, 2022

# 3. Permeability via the Green-Kubo equations with steered MD

$$\frac{1}{P} = \int_{-d}^{d} \frac{\exp(\beta \Delta G(z))}{D_{z}(z)} dz$$

$$D_{z}(z) = \frac{\left(RT\right)^{2}}{\int_{0}^{\infty} dt \left\langle \Delta F_{z}(z,t) \Delta F_{z}(z,0) \right\rangle}$$

Jorgensen et al. JCIM, 2025