Ultra-Large Libraries and Chemical Spaces of Virtual Screening Samples with Proposed Synthetic Routes

Marc C. Nicklaus

Actyon Discovery, Inc.

XXXI Symposium on Bioinformatics and Computer-Aided Drug Discovery (BCADD-2025), 2025-10-21

Disclaimer

The views and opinions presented here represent those of the speaker. They are not the view of, nor speaking for, my former employer NCI, NIH; nor of my new company, Actyon Discovery, Inc.
The results reported here are from published papers or preprints co-authored by the speaker.

Motivation: Very large chemical spaces becoming more numerous (see, e.g., https://www.biosolveit.de/chemical-spaces/); but enumerated libraries still exist. Does it have to be one or the other?

Outline:

- 1. SAVI (2020 Library)
 (Synthetically Accessible Virtual Inventory)
- 2. SAVI Space
- 3. SLICE
- 4. Comparison of enumerated libraries with chemical spaces

Why SAVI?

Maybe We're Asking the Wrong Question in CADD

Designed molecule may or may not be synthetically tractable

$$F \longrightarrow S \longrightarrow N \longrightarrow OH \longrightarrow ??$$

quoted: \$900 for 50 mg -- but no predicted synthetic route; couldn't be synthesized (at that cost)

Why do we grapple with this kind of problem?

Maybe we should instead ask:

What can I make easily, reliably, and cheaply?

Exploiting Decades of Research into Synthesis Prediction

SAVI Methodology:

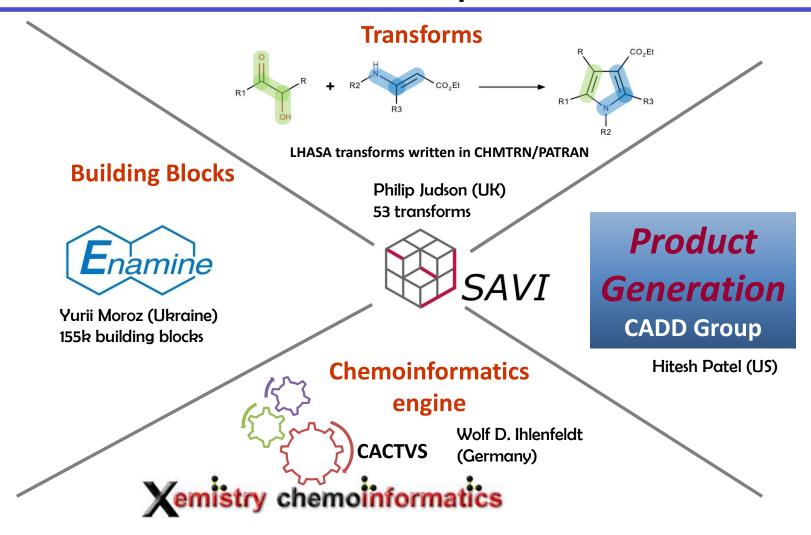
- Derived from the LHASA project¹; which started in late 1960s/early 1970s
- Expert-system type approach
- Language pair CHMTRN & PATRAN²
- LHASA: retrosynthetic; SAVI: forward-synthetic

Advantages:

- Does not need large training database to add new transform: Can easily add new rules
- Goes way beyond the typically used SMIRKS transforms
- Has scoring and KILL capability

Sonogashira coupling: [#6;\$(C=C-[#6]), \$(c:c):1] [Br,I].[CH1; $\$(C\#CC):2] \gg [\#6:1]$ [C:2]

Does this really tell you all about the "chemical logic" of all possible Sonogashira reactions?


¹ LHASA—Logic and Heuristics Applied to Synthetic Analysis, Pensak and Corey, ACS Symp. Ser., 1977

² Judson et al., JCIM, 2020 60 (7), 3336-3341.

CHMTRN/PATRAN Transform Excerpt

```
TRANSFORM 2267
                                                                                      KILL IF ANYWHERE THERE IS AN ACID*HALIDE OR: ANHYDRIDE OR:
              NAME Sonogashira Coupling
                                                                                      EPOXIDE OR: ISOCYANATE
                                                                                      FOR EACH IODINE ATOM ANYWHERE DO I_CHK
              R-C\#C-R1 ==> R-X + H-C\#C-R1
                                                                                       IF THERE IS ONLY ONE ATOM ALPHA TO SPECIFIED*ATOM 1
                                                                                      THEN KILL
              R = Aryl \text{ or Vinyl}; X = Br, I
              ...RATING 60
                                                                                      TURN OFF BIT 1
              TYPICAL*YIELD
                                    VERY*GOOD
                                                                                      FOR EACH BROMINE ATOM ANYWHERE DO BR CHK
              RELIABILITY
                                  GOOD
                                                                                        IF THERE IS ONLY ONE ATOM ALPHA TO SPECIFIED*ATOM 1
              REPUTATION
                                    GOOD
                                                                                      AND:IF &
              HOMOSELECTIVITY
                                      FAIR
                                                                                         AN ATOM BETA TO SPECIFIED*ATOM 1 IS MULTIPLY BONDED
              HETEROSELECTIVITY
                                       GOOD
                                                                                      THEN &
              ORIENTATIONAL*SELECTIVITY
                                           NOT*APPLICABLE
                                                                                         TURN ON BIT 1
              CONDITION*FLEXIBILITY
                                        FAIR
              THERMODYNAMICS
                                        GOOD
                                                                        ... Qualifiers for R group. If the halide is aromatic
1D*PATTERN
                                                                        ... withdrawing groups on the ring activate and vice versa.
              C[RINGS=NO]#C-C[ARYL=YES]
                                                                                      IF ATOM*3 IS AN AROMATIC ATOM
1D*PATTERN
                                                                                      BEGIN BLOCK1
              C[RINGS=NO]#C-C=C
                                                                                        DESIGNATE AS THE CURRENT*RING &
                                                                                         THE RING CONTAINING THE ATOMS ALPHA TO ATOM*3
...1D*PATTERN
                                                                                      OFFPATH
              C[RINGS=NO]#C-C[HS=2]-C[ARYL=YES]
                                                                                        SAVE AS 1 THE ATOMS ON*CURRENT*RING
...1D*PATTERN
                                                                                        ADD 10 IF THERE IS A WITHDRAWING BOND &
              C[RINGS=NO]#C-C[HS=2]-C=,#C
                                                                                         ON SAVED*ATOM 1 OFF*CURRENT*RING
NEW*1D*PATTERN
                                                                                        RAISE*RATING SLIGHTLY IF THERE IS A WITHDRAWING BOND &
              C[RINGS=NO]#C-C[ARYL=YES] => C^1[RINGS=NO]#C^2[HS=1]
                                                                                         ON SAVED*ATOM 1 OFF*CURRENT*RING
              + Cl,Br,I-C^3[ARYL=YES]
                                                                                        SUBTRACT 10 IF THERE IS A DONATING BOND &
NEW*1D*PATTERN
                                                                                         ON SAVED*ATOM 1 OFF*CURRENT*RING
              C[RINGS=NO]\#C-C=C \Rightarrow C^1[RINGS=NO]\#C^2[HS=1] + Cl,Br,l-
                                                                                        LOWER*RATING SLIGHTLY IF THERE IS A DONATING BOND &
              C^3=C
                                                                                         ON SAVED*ATOM 1 OFF*CURRENT*RING
2D*PATTERN
                                                                                        IF THERE ARE SIX ATOMS ON*CURRENT*RING
                                                                                        BEGIN BLOCK2
                     H Br,I,Cl
                                                                                         ADD 10 IF THERE IS A NITROGEN ATOM ON*CURRENT*RING
                                                                                         RAISE*RATING SLIGHTLY IF THERE IS A NITROGEN ATOM
              C\#C-C\%,=C=>C\#C+C\%,=C
                                                                                      ON*CURRENT*RING
                                                                                        BLKEND BLOCK2
END*PATTERNS
                                                                                      BLKEND BLOCK1
```

SAVI-2020 Components

SAVI-2020: Product Counts

"Plus" class: has not encountered any SUBTRACT.

Class	SAVI products	Unique	Percentage
Plus	1,094,782,440	976,051,945	62.61%
Neg0	609,262	579,532	0.03%
Neg10	54,775,204	48,036,148	3.13%
Neg20	82,180,372	80,366,188	4.7%
Neg30	516,116,725	457,508,945	29.52%
Total	1,748,464,003	1,526,316,392	

Non-uniqueness due to multiple possible synthetic routes for some molecules – welcome feature of SAVI.

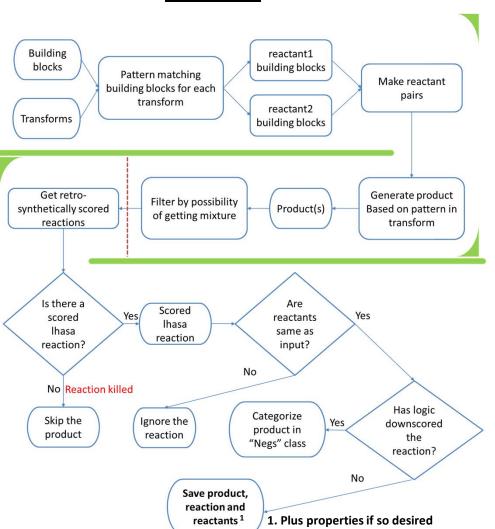
Generating this billion+ SAVI database is computationally costly: >5 million CPU hours on NIH Biowulf cluster. It's also large (downloadable from https://cactus.nci.nih.gov/download/savi_download/):

SDFs in total: 4.4TBSMILES tables in total: 1.1TB

Patel, H., Ihlenfeldt, WD., Judson, P.N. *et al.* SAVI, *in silico* generation of billions of easily synthesizable compounds through expert-system type rules. *Sci Data* **7**, 384 (2020). https://doi.org/10.1038/s41597-020-00727-4

SAVI-Space -

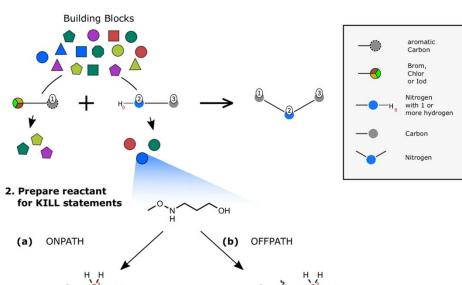
Combinatorial Encoding of a Billion-Size Synthesizable Virtual Inventory

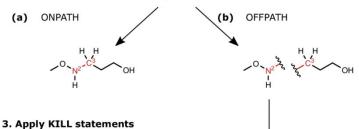

- SAVI-Space: Design a compressed, fragment-based and reaction-driven data structure (Fragment Space) for improved accessibility.
 - **SAVI-Space**¹ encodes transformations combinatorially, designed to enhance speed, scalability, and accessibility
 - Created by Malte Korn (Matthias Rarey group, Univ. Hamburg)
 - Three different versions of SAVI-Space were generated

^{1.} Korn, M., Judson, P., Klein, R. *et al.* SAVI Space—combinatorial encoding of the billion-size synthetically accessible virtual inventory. *Sci Data* **12**, 1064 (2025). https://doi.org/10.1038/s41597-025-05384-z

SAVI-Lib & SAVI-Space Versions

Version	Building Blocks Used	Number of Products	KILL Rate	Comput- ational Time/h	Disk Space Needed
SAVI (-Lib) 2020	143k ⁽¹⁾	1.75B	51%	5,000,000	SDF: 4.4T SMILES: 1.1T
SAVI-Space-2020 (Lib-2020 rules)	139k	2.34B	29%	3	2.1GB
SAVI-Space-2020	138k	2.40B	36%	3	0.8GB
SAVI-Space-2024	256k	7.55B	29%	10	1.4GB


^{1.} Out of an original 155k building blocks provided by Enamine

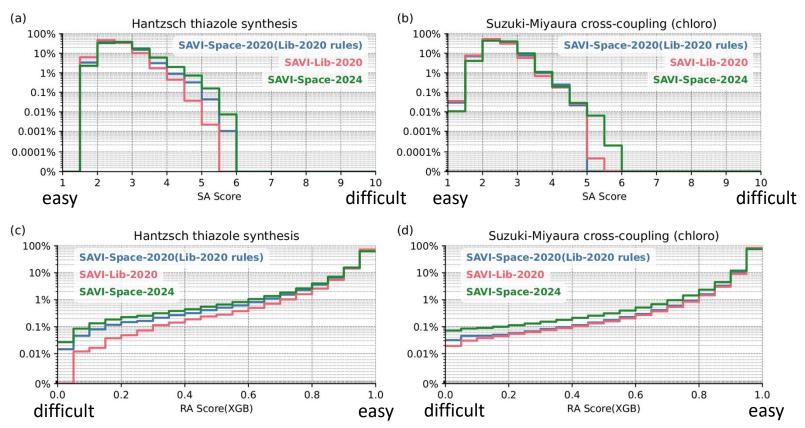


Workflows

E.g. Reaction 6041 Buchwald-Hartwig Reaction - Amines

1. Reactant validation

KILL IF THERE IS A HETERO ATOM WITHIN BETA TO ATOM*2 OFFPATH


[*;2]~[!#6;!#1] or [*;2]~[*]~[!#6;!#1]

Challenges encountered and (mostly met) in the path from SAVI-Lib to SAVI-Space

- Wrote transpiler translating LHASA transform patterns into reaction SMARTS patterns
- Atoms and bonds can have properties in LHASA patterns difficult to replicate in SMARTS
- KILL statements:
 - Translated to filter rules applied to reactants
 - Created manually (300 KILLs)
 - KILLs may combine atoms from reactant A and reactant B
 - Some CHMTRN keywords are difficult/impossible to translate to SMARTS
 - LESS*HINDERED; IN THE SAME RING AS . . .
 - For translated SMARTS expressions, additional information is stored (JSON)
- Protecting group handling in SAVI-Lib difficult to replicate in SAVI-Space
- Exact comparison of Space with Lib difficult unless you enumerate Space
 - SAVI-Space had 34% more products than SAVI-Lib
 - Recapitulation of 1000 Lib compounds in Space: 56% 100%, avg.: 95%

Synthetic accessibility

SA: synthetic accessibility score. RA: retrosynthetic accessibility score.

Searching for Drugbank Molecules in REAL Space and SAVI Space

Queries: Drugbank approved 2025/07; 300 < MW < 500 (1074 cpds)
Search methodology: SpaceLight - topological fingerprint similarity (fCSFP2,5)

- REAL Space 2024:
 - 48 billion products
- Results:
 - 54 exact matches
 - 236 with high similarity (>0.8)
- Resources:
 - 48min (2.7sec/cpd)

- SAVI Space 2024:
 - 7.6 billion products
- Results:
 - 69 exact matches
 - 415 with high similarity (>0.8)
- Resources:
 - 22min (1.3sec/cpd)

Hardware: Intel(R) Core(TM) i5-8500 CPU @ 3.00GHz; 6 cores

SLICE (SMARTS and Logic In Chemistry)

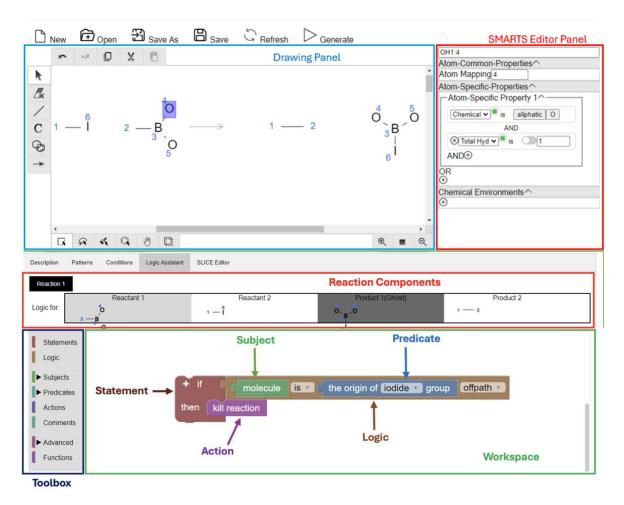
Idea was: (a) Can we make SAVI faster; (b) SAVI transforms easier to write?

SLICE consists of:

- SLICE Designer: GUI to define SMARTS patterns, configure atom and bond properties, and establish chemical constraints and logic.
 Programmed in JavaScript; generates XML files with SMARTS and logic.
- 2. SLICE Engine: uses XML files to generate virtual libraries from specified building blocks.

Programmed in Java. Generates enumerated SD and/or CSV files.

Available at: https://github.com/tarasovan/SLICE-public
Nouleho Ilemo S., Delannée V. et al., https://doi.org/10.26434/chemrxiv-2025-m6klm


SLICE Designer

Uses:

- Custom-designed Blockly blocks (no need for traditional programming), based on a simple structure inspired by the home automation software: IFTTT (IF This Then That)
- Conditional statements with the following basic structure:

if <subject> <relation> <predicate> <where> then <action>

SLICE Designer: Logic Assistant Tab

SLICE Designer with Suzuki-Miyaura Cross-Coupling (Iodo) transform:

SLICE Designer: Loops

Loop syntax: foreach <chemical_object> <where> defined as <variable_name> in <Object>

```
foreach carbon atom offpath defined as carbon_atom in molecule

+ if carbon_atom is aromatic then raise rating slightly
```

SLICE Engine: Performance

Normalized time per million products for SAVI and SLICE across transforms

Transform ID	SAVI Products	SAVI Time (min)	SAVI Time/Million (min)	SLICE Products	SLICE Time (min)	SLICE Time/Million (min)	Speed-up Ratio SLICE
6005	4,839,627	5,519	1,140.5	3,472,481	92	26.5	43
7019	43,217,313	262,690	6,078.7	129,750,587	14,142	109.0	51
2201	1,190,253	16,038	13,470.4	1,769,041	128	72.3	186
7009	84,849,166	204,859	2,413.4	187,820,353	11,305	60.2	40

Note: These product sets were fully enumerated.

Enumerated vs. Fragment-Based Screening Structure Sets

	Enumerated Libraries	Fragment/Synthon-Based Spaces
Space	Large (TB)	Small (GB)
Maximal structure number	<10 ¹¹	>10 ¹¹
Time to generate	Slow	Fast ⁽¹⁾
Datasets	Static	Dynamic
Specific ring(-system) questions	Yes	No (not yet)
Advanced chemical logic	Yes	Difficult
Exchange of datasets	SDF, SMILES: yes	Synthon sets: not directly
Similarity/substructure search	Slow (GPU-based: faster)	Fast
Docking with external tools	Yes	No
Docking speed	Slow (GPU-based: faster)	Fast (Chemical Space Docking)
Conformational expansion	Yes (though slow, except w/GPUs)	No
External ADME/Tox predictions	Yes	No
Hardware needed	Best: HPC, GPUs	Sufficient: Desktop, laptop

⁽¹⁾ Addition of advanced chemical logic can cost significant human time

Is it Either Enumerated or Fragment-Based?

No, they can happily live alongside each other, if not support each other:

- SAVI Library and SAVI Space
- Enamine REAL Space (77B) now accessible as both an enumerated dataset and a synthon-based space
- FSees (Rarey group): fragment space exhaustive enumeration system
- Iterative modeling based on evolutionary approaches: Enumerate subset of fragment-based space; analyze this subset; use its properties to generate next, evolutionarily improved, subset etc.

Weber L. *et al.*, Angew. Chem. Int. Ed. Engl. (1995), 34(20), 2280-2282 Hiss J. *et al.*, Future Med. Chem. (2014) 6(3), 267–280 Liu H.-P. *et al.*, Sci. Rep. (2024) 14:24510 Reddy S. *et al.*, (2024) arXiv:2407:13779v1

Acknowledgements

- CADD Group, CCR, NCI
 - Hitesh Patel (now: OpenEye)
 - Yuri Pevzner (now: BMS)
 - Stefi Nouleho
 - Victorien Delannée (now: Deep Origin)
 - Olga Grushin
 - Megan L. Peach (now: FDA)
- SBDD Group, CCR, NCI
 - Nadya Tarasova
 - Cody Hoop
- Enamine/Chemspace
 - Yurii Moroz
- Xemistry GmbH
 - Wolf-Dietrich Ihlenfeldt
- Lhasa Limited
 - Philip Judson
 - Martin Ott

- OntoChem
- Lutz Weber (now: Actyon Discovery)
- ChemNavigator/MilliporeSigma
- Scott Hutton (now: Actyon Discovery)
- MilliporeSigma
 - Bret Daniel
- Chad Hurwitz
- Novartis
 - Peter Ertl (now: Actyon Discovery [Advisor])
- BioSolveIT
 - Christian Lemmen
- Raphael Klein
- Univ. Hamburg
 - Matthias Rarey
 - Malte Korn