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HPVPathogenesis&Progression

E6 & E7 proteins inhibit tumor suppressors p53 and pRB →uncontrolled growth 
Most infections are asymptomatic and clear in 12–24 months
Persistent infection may cause precancerous changes

Progression to cervical cancer is linked to risk factors:

1.) Weakened immune system 3.) Hormonal exposure2.) Smoking



Small, circular double-stranded DNA
virus (~8 kb) from the Papillomaviridae
family

150 genotypes,categorized as low-
riskor high-risk

High-risk types 16&18 cause ~70%
of cervical cancer cases (NCI,
2022)

HPV: Impact, Genome, & Infection 
Process

Genome regions:
1.Early (E) Region
2.Late (L) Region
3.Long Control Region (LCR)

Infects epithelial cells via 
microabrasions

Can persist latently as an episome 
in host cells



LiteratureReview
2.1Human Papillomavirus (HPV)

and mucous

direct skin-to-skin

Infects skin 
membranes

Spread via 
contact

Most infections are asymptomatic

Low-risk types →genital warts

High-risk types → abnormal cell 
changes, potential cancers

2.2 Bioinformatics

Integrates biology, computer science, 
mathematics, and statistics

Analyzes large-scale data: genomics, 
transcriptomics, proteomics

Key role in drug discovery & drug 
repurposing

Uses databases/tools for gene & protein 
expression analysis

Aids in disease insights, biomarker 
discovery, and precision medicine



Literature Review
2.3 Drug Repurposing

Reuses existing drugs for new disease targets 

Identifies novel drug–disease associations 

Reduces risk and accelerates development 

Supports precision medicine approaches



Methodology
3.1.DataCollection

(1) Data sourced from public chemical database ⟶(2)
SMILES format chosen due to compatibility and
structure encoding ⟶ (3) Only compounds with
knownIC50 were retained.

3.2. Bioactivity Filtering

Removed “intermediate” bioactivity classes to
enhance model clarity.
Focused on binary classification: active vs inactive
compounds.



Methodology
3.3. Molecular Descriptor Calculation

3.4. Activity Normalization
for

H-bond

&Drug-likenessEvaluation

Employed RDKit and PaDEL
descriptor generation:

Molecular weight, LogP, 
donors/acceptors

opological Polar Surface Area (TPSA)

Fingerprints (1D, 2D, substructure-
based)

Screen based on Lipinksi’s Rule of Five to 
prioritize drug-like compounds.

Transformed IC50 to pIC50 to 
normalize data for regression.

1.Mann-Whitney U Test
2. Pearson correlation

3.5. Statistical Analysis



Methodology
3.6.SMILESto PubChem Fingerprints

Converted molecules to 881-bit fiingerprints encoding structural features. 
Input format for Neural Network.

3.7.Model Development

Library: KERAS
Input: 881D vector
Layer: 400 →200 →100 →1 
Activations: Sigmoid (input), ReLU,
Linear (output).

Optimization: Adam, Mean Squared Error 
loss
Training monitored via validation loss.

Seaborn, Matplotlib: Scatter plots, 
histograms, heatmaps.
Graphs highlighted: 

pIC50 distribution
Training vs validation loss 
Correlation analysis

3.8. Visualization Tools



4.1. Descriptor Trends
Results



Results
4.2. Statistical Results (Mann-Whitney Utest)



4.3.Differences in Descriptors BetweenActiveand Inactive Compounds

Results

Figure1. Compounds according to molecular weight and lipophilicity 
(LogP)

This plot visualises 
compounds based on 
their molecular weight 
and lipophilicity (LogP),
colored by bioactivity 
class and sized by 
binding potency (pIC50). 
It helps identify which
physicochemical profiles 
are associated with 
higher activity.



Results
4.4 Model Performance

Training & validation loss decrease smoothly, which suggests: 
Good generalization.
Minimal overfitting.

Good R-value of 0.87 and a good P-Value of 3,30×10 ⁻̂13



4.4. Training and Validation of the model

Results

Figure2. Training and Validation Loss of the model

• It shows the training loss 
imposed on the validation loss, 
the graph showed that both the 
training and validation loss 
experience a significant drop in 
terms of loss that the remains 
minimal for the rest of training. 

• However, there is a small 
increase in loss for both models 
during the initial training phase 
and the period of 100 to 500 
epoch in the validation loss.



Results

4.5 Binding Affinity Predictions

39 candidate compounds scored for pIC50. 
Range: 8.1 -8.4
Several candidates identified with high predicted affinity.



4.5. Binding Affinity Prediction Results

Results

Figure2. Predicted binding affinities of 39 compounds

• The scores vary moderately across 
samples (range: 8.1–8.4), 
suggesting variability in predicted 
target binding strength.

• High-scoring compounds, which 
are the peaks in the plot, may 
represent promising repurposing 
candidates for further biological 
validation.



Key Takeaways (1)

The study applied a bioinformatics-based pipeline integrating 
cheminformatics filtering, statistical analyses, and deep learning models 
to identify drug repurposing candidates for HPV-associated disorders.

Active compounds showed significantly higher molecular weight (400–
500 Da) and lipophilicity (LogP 3.4–4) compared to inactive ones, 
indicating these properties enhance membrane permeability and 
bioactivity crucial for drug-target interactions.



Key Takeaways (2)

The number of hydrogen bond donors was a critical differentiator; active 
compounds usually had two or more donors facilitating stronger and more 
targeted binding with HPV protein targets, while hydrogen bond acceptors 
showed no significant difference.

Study limitations included lack of external validation and consideration of 
prediction variance, suggesting future work should assess model 
generalizability and integrate uncertainty to reduce false positives in drug 
repurposing decisions.



Conclusion and Finalization Plan
Conclusion

Deep learning accurately predicted binding affinity (R = 0.87, p <
0.0001).
Significant differences found in key descriptors: LogP, molecular 
weight, H-bond donors, and pIC₅₀.
Predicted compounds that may serve as repurposing candidates for 
HPV treatment according to their binding affinity.
Despite dataset limitations, the model captured meaningful structure–
activity relationships.




