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HPV Pathogenesis & Progression

e E6 & E7 proteins inhibit tumor suppressors p53 and pRB —uncontrolled growth
e Most infections are asymptomatic and clear in 12-24 months
e Persistent infection may cause precancerous changes

Progression to cervical cancer is linked to risk factors:
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1.) Weakened immune system 2.) Smoking 3.) Hormonal exposure




Small, circular double-stranded DNA
virus (~8 kb) from the Papillomaviridae
family

150 genotypes,categorized as low-
risk or high-risk

o High-risk types 16 & 18 cause ~70%
of cervical cancer cases (NClI,
2022)

HPV: Impact, Genome, & Infection
Process

Genome regions:
1.Early (E) Region
2.Late (L) Region
3.Long Control Region (LCR)

o Infects  epithelial cells  via
microabrasions

o Can persist latently as an episome
in host cells




2.1 Human Papillomavirus (HPV)

Infects skin and mucous
membranes

Spread via direct skin-to-skin
contact

Most infections are asymptomatic

Low-risk types —genital warts

High-risk types — abnormal cell
changes, potential cancers

Literature Review

2.2 Bioinformatics

Integrates biology, computer science,
mathematics, and statistics

Analyzes large-scale data: genomics,
transcriptomics, proteomics

Key role in drug discovery & drug
repurposing

Uses databases/tools for gene & protein
expression analysis

Aids in disease insights, biomarker
discovery, and precision medicine




Literature Review

2.3 Drug Repurposing
. Reuses existing drugs for new disease targets

. ldentifies novel drug-disease associations

. Reduces risk and accelerates development

. Supports precision medicine approaches




Methodology

3.1. Data Collection

(1) Data sourced from public chemical database —(2)
SMILES format chosen due to compatibility and

structure encoding — (3) Only compounds with
known ICso were retained.

3.2. Bioactivity Filtering

. Removed “intermediate” bioactivity classes to
enhance model clarity.

. Focused on binary classification: active vs inactive
compounds.
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3.3. Molecular Descriptor Calculation
& Drug-likeness Evaluation

e Employed RDKit and PaDEL for
descriptor generation:

, Molecular  weight, LogP, ., .4
donors/acceptors

o opological Polar Surface Area (TPSA)

o Fingerprints (1D, 2D, substructure-
based)

Screen based on Lipinksi’s Rule of Five to
prioritize drug-like compounds.

3.4. Activity Normalization

Transformed ICso to pICso to

normalize data for regression.

3.5. Statistical Analysis

1.Mann-Whitney U Test

2. Pearson correlation




Methodology

3.6. SMILES to PubChem Fingerprints

o Converted molecules to 881-bit fiingerprints encoding structural features.

o Input format for Neural Network.

3.7.Model Development 3.8. Visualization Tools

e Library: KERAS

o Input: 881D vector
o Layer: 400 —-200 —-100 -1
o Activations: Sigmoid (input), RelU,

o Seaborn, Matplotlib: Scatter plots,
histograms, heatmaps.
o Graphs highlighted:
o plCso distribution

Linear (output).
o Optimization: Adam, Mean Squared Error
loss
e Training monitored via validation loss.

o Training vs validation loss
o Correlation analysis




Results

4.1. Descriptor Trends
Descriptor Statistics P-value alpha Result
LogP 373.0 2.7774690875852 0.05 Different distribution
547e-06 (reject HO)
Molecular weight 394.0 1.4622616401914 0.05 Different distribution
704e-07 (reject HO)
Number of H 264.0 0.0521281120453 0.05 Same distribution
acceptors 2611 (fail to reject HO)
Number of H 362.5 8.4376681800619 0.05 Different distribution
Donors 4e-07 (reject HO)
plC50 399.0 5.9241615105600 0.05 Different distribution

18e-08

(reject HO)




Results

4.2. Statistical Results (Mann-Whitney U test)

Property Active Compounds Inactive Compounds
Molecular Weight 400-500 Da 250-350 Da

LogP 3.4-4.0 1.9-2.6

Hydrogen Bond Donors >2 1

Hydrogen Bond Acceptors No significant difference No significant difference




Results

4.3.Differences in Descriptors Between Active and Inactive Compounds
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Results

4.4 Model Performance

e Training & validation loss decrease smoothly, which suggests:
o Good generalization.

o Minimal overfitting.
e Good R-value of 0.87 and a good P-Value of 3,30 x10A-13




Results

4.4. Training and Validation of the model

Training and validation loss « It shows the training loss
Training loss impOSEd on the validation IOSS,
40 — Validation loss the graph showed that both the

training and validation loss
experience a significant drop in
terms of loss that the remains
minimal for the rest of training.
« However, there is a small
increase in loss for both models
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igure 2. Training and Validation Loss of the model



Results

4.5 Binding Affinity Predictions

O
¢ 39 candidate compounds scored for pIC50.

e Range: 8.1 -8.4

o Several candidates identified with high predicted affinity.




Results

4.5. Binding Affinity Prediction Results

» The scores vary moderately across
samples (range: 8.1-8.4),
suggesting variability in predicted
target binding strength.

67 » High-scoring compounds, which

are the peaks in the plot, may

represent promising repurposing

L_/ candidates for further biological

/\ || validation.
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Figure 2. Predicted binding affinities of 39 compounds




Key Takeaways (1)

The study applied a bioinformatics—-based pipeline integrating
cheminformatics filtering, statistical analyses, and deep learning models
to identify drug repurposing candidates for HPV-associated disorders.

Active compounds showed significantly higher molecular weight (400-
500 Da) and lipophilicity (LogP 3.4-4) compared to inactive ones,
indicating these properties enhance membrane permeability and
bioactivity crucial for drug-target interactions.




Key Takeaways (2)

The number of hydrogen bond donors was a critical differentiator; active
compounds usually had two or more donors facilitating stronger and more
targeted binding with HPV protein targets, while hydrogen bond acceptors
showed no significant difference.

Study limitations included lack of external validation and consideration of
prediction variance, suggesting future work should assess model

generalizability and integrate uncertainty to reduce false positives in drug
repurposing decisions.




Conclusion and Finalization Plan

Conclusion

Deep learning accurately predicted binding affinity (R = 0.87, p <

0.0001).
Significant differences found in key descriptors: LogP, molecular

weight, H-bond donors, and plCso.

Predicted compounds that may serve as repurposing candidates for

HPV treatment according to their binding affinity.
Despite dataset limitations, the model captured meaningful structure-

activity relationships.







