

XXXI Symposium on Bioinformatics and Computer-Aided Drug Discovery (BCADD-2025)

Emerging Challenges and Opportunities for In Silico Drug Discovery

TOOL FOR DIVERSITY VISUALIZATION ON THE LEVEL OF MOLECULAR SCAFFOLDS, TDV, CHEMICAL DATA AT GLANCE

Pavel V. Pogodin PhD, scientist at the LSFBD, IBMC

Scaffolds

Scaffold is the core (rings + linkers between them) of the chemical structure,

- which, to a large extent, defines molecule's geometry,
- which greatly affects the possibility for the molecule to interact with the components of biological system and thus,
- to some extent defines the activity spectra¹ of the molecule in the human body, for example.

Scaffolds

This concept was introduced to the broad scientific community as Molecular Framework by medicinal & computational chemists², thus **molecule** here is rather a **drug-like molecule**.

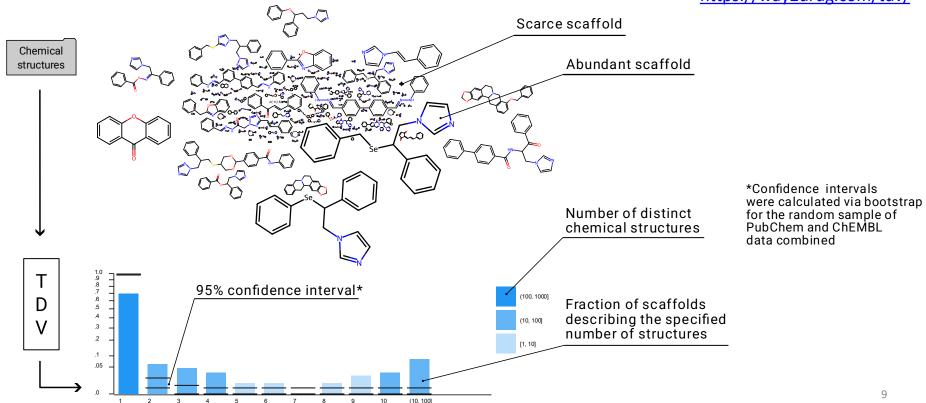
At the moment it is possible to calculate scaffolds using various cheminformatics tools, RDKit for example³, and meaning of this term could slightly vary from tool to tool.

RDKit scaffolds

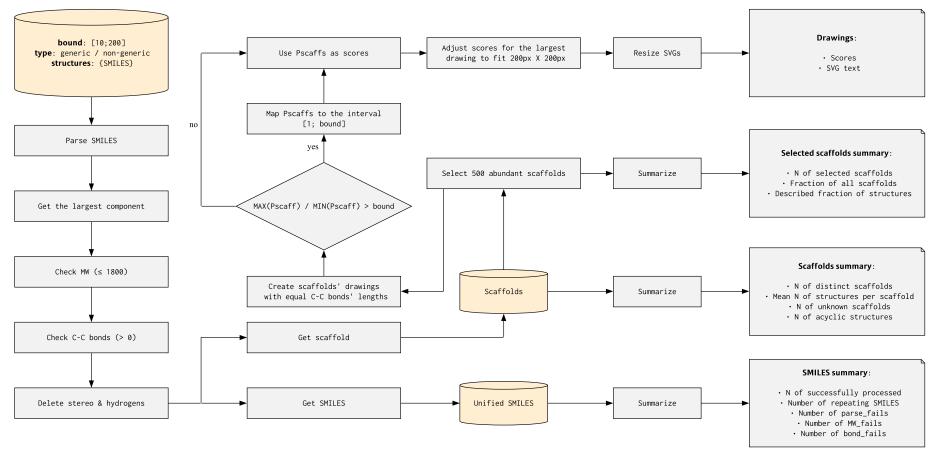
In the context of this study, diversity is the compositional complexity of the set of chemical structures assessed as the number and weight of the scaffolds describing them.

- One can see the analogy with the concept of biodiversity assessed through the number and weight of the species in the ecosystem and dive deeper^{4–6}.
- Others can see the connections with the molecular complexity extended from the level of distinct structures to the level of the set of structures⁷.

In short, this topic is hard, but useful:


- there are several ways to think of and assess the diversity
- all of them are somehow different from each other and that could have some practical consequences
- In the meantime, knowing the content of the set of chemical structures is useful, it can help to select appropriate modeling strategy and rationally select the specific set to work with among the several available.

Thus, diversity assessment should benefit from the actionable visualization^{8–13}.

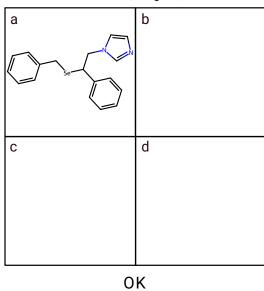

Tool for chemical diversity visualization on the level of The dataset of C. albicans inhibitors The dataset of C. albicans inhibitors The dataset of C. albicans inhibitors

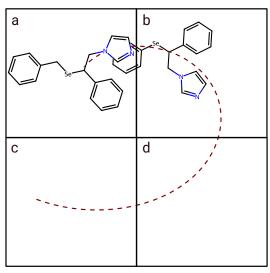
The dataset of C. albicans inhibitor Constructed using ChEMBL data

https://way2drug.com/tdv/

How it works

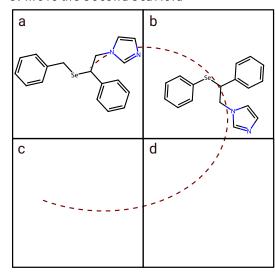
on the server


How it works


in the browser

How it works

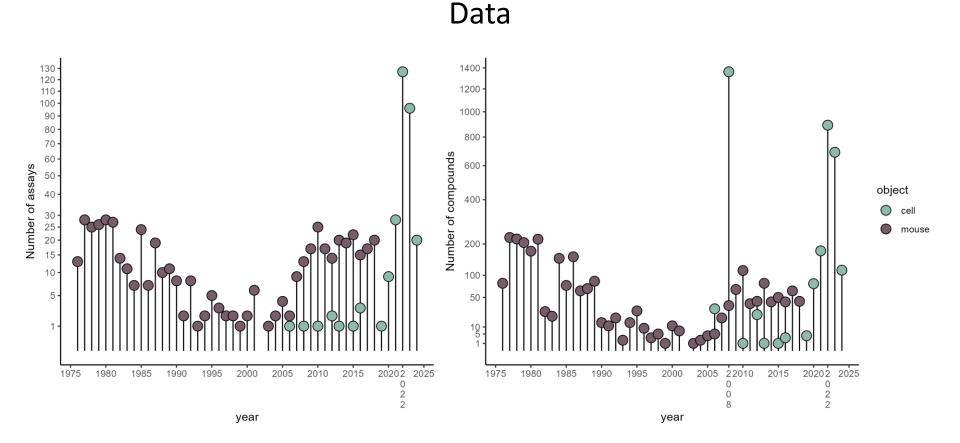
1. Place the first, largest, scaffold


2. Place the second scaffold with an offset

- id entify quadrants occupied by the scaffold (a and b) check XY ∞ ordinates for intersection

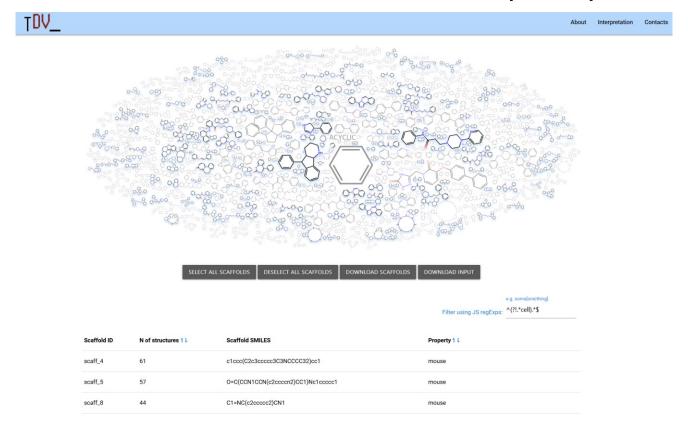
not OK

3. Move the second scaffold



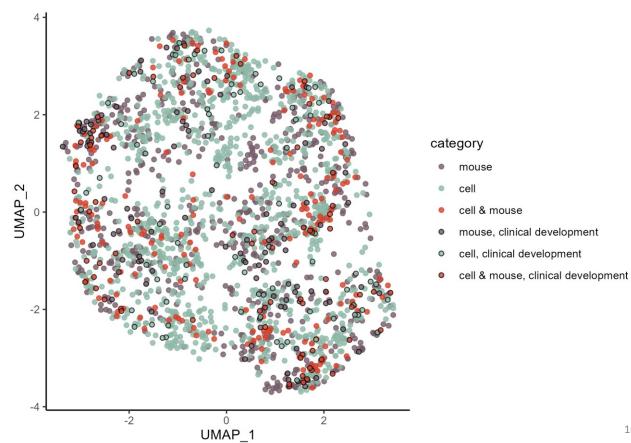
- id entify quadrants occupied by the scaffold (b) check XY ∞ ordinates for intersection

OK


Case study of the ChEMBL data on toxicity¹⁴, RSF № 25-15-00300

- Obtain ChEMBL¹⁵ data related to the pre-clinical assessment of toxicity: Chemical Structures of compound having LD_{50} (mouse) and / or CC_{50} (cells)
- Visualize the diversity on the level of scaffolds using TDV and on the level of MNA descriptors¹⁶ using extended UMAP^{17–19}

Mouse probably leaves the freely available LD₅₀ studies for good


Elements of the scaffold's diversity analysis

Diversity analysis on the level of MNA descriptors

- Describe compounds using MNA
- Select appropriate number of descriptors allowing to distinguish between the compounds
- Extend the set appropriately
- UMAP
- Plot the results

Chemical structures tested using cells cover all the available space of descriptors

Materials

TDV:

- https://github.com/RSF-23-73-01058/
- https://way2drug.com/tdv/

LD₅₀ and CC₅₀ study:

 https://github.com/RSF-25-15-00300-LD50cytotoxicity/ChEMBL35_compare_mouseLD50-cellsCC50

Key takeaways

- Working with chemical data is important for the clarity of the various studies involving them
- Diversity of the sets of chemical compounds could be visualized using TDV freely available in the Internet via Way2Drug platform: https://way2drug.com/tdv/

Acknowledgements

- TDV development was supported by the Russian Science Foundation, grant № 23-73-01058
- LD₅₀ and CC₅₀ analysis was conducted in the framework of the project supported by the Russian Science Foundation, grant № 25-15-00300
- To the G.S. Malakhov (FBB, MSU; LSFBDD, IBMC), who contributed greatly to the TDV development and to the discussions of related topics
- To the Y.V. Polovets, who prepared the C. albicans dataset and observed the deviations in the global data structure after UMAP in the course of her graduation project (RNRMU)
- To the D.S. Druzhilovsky for the TDV placement on the Way2Drug platform
- To the head of LSFBDD, full member of RAS, prof. V.V. Poroikov and all the colleagues from LSFBDD and IBMC and scientific community in general - for the fruitful discussions

THANK YOU FOR YOUR ATTENTION

References

- (1) Lagunin, A.; Stepanchikova, A.; Filimonov, D.; Poroikov, V. PASS: Prediction of Activity Spectra for Biologically Active Substances. Bioinformatics 2000, 16 (8), 747–748.
- (2) Bemis, G. W.; Murcko, M. A. The Properties of Known Drugs. 1. Molecular Frameworks. Journal of medicinal chemistry 1996, 39 (15), 2887–2893.
- (3) Landrum, G. Rdkit Documentation. Release 2013, 1 (1-79), 4.
- (4) Patil. G. P.: Taillie, C. Diversity as a Concept and Its Measurement. Journal of the American statistical Association 1982, 77 (379), 548-561.
- (5) Roswell, M.; Dushoff, J.; Winfree, R. A Conceptual Guide to Measuring Species Diversity. Oikos 2021, 130 (3), 321-338.
- (6) Chao, A.; Chiu, C.-H.; Villéger, S.; Sun, I.-F.; Thorn, S.; Lin, Y.-C.; Chiang, J.-M.; Sherwin, W. B. An Attribute-Diversity Approach to Functional Diversity, Functional Beta Diversity, and Related (Dis) Similarity Measures. *Ecological monographs* 2019, 89 (2), e01343.
- (7) Bonchev, D.; Rouvray, D. Complexity: Introduction and Fundamentals; CRC Press, 2003.
- (8) Schneider, T. D.; Stephens, R. M. Sequence Logos: A New Way to Display Consensus Sequences. Nucleic acids research 1990, 18 (20), 6097-6100.
- (9) Viegas, F. B.; Wattenberg, M.; Feinberg, J. Participatory Visualization with Wordle. IEEE transactions on visualization and computer graphics 2009, 15 (6), 1137–1144.
- (10) Ertl, P.; Rohde, B. The Molecule Cloud-Compact Visualization of Large Collections of Molecules. Journal of Cheminformatics 2012, 4 (1), 12.
- (11) González-Medina, M.; Prieto-Martínez, F. D.; Owen, J. R.; Medina-Franco, J. L. Consensus Diversity Plots: A Global Diversity Analysis of Chemical Libraries. Journal of Cheminformatics 2016, 8 (1), 63.
- (12) Gaspar, H. A.; Baskin, I. I.; Varnek, A. Visualization of a Multidimensional Descriptor Space. In Frontiers in molecular design and chemical information science-herman skolnik award symposium 2015: Jürgen bajorath; ACS Publications, 2016; pp 243–267.
- (13) Probst, D.; Reymond, J.-L. Visualization of Very Large High-Dimensional Data Sets as Minimum Spanning Trees. Journal of Cheminformatics 2020, 12 (1), 12.
- (14) scientists, various young. XI Молодежная Конференция ИОХ РАН.
- (15) Zdrazil, B.; Felix, E.; Hunter, F.; Manners, E. J.; Blackshaw, J.; Corbett, S.; De Veij, M.; Ioannidis, H.; Lopez, D. M.; Mosquera, J. F.; others. The ChEMBL Database in 2023: A Drug Discovery Platform Spanning Multiple Bioactivity Data Types and Time Periods. *Nucleic acids research* 2024, 52 (D1), D1180–D1192.
- (16) Filimonov, D.; Poroikov, V.; Borodina, Y.; Gloriozova, T. Chemical Similarity Assessment Through Multilevel Neighborhoods of Atoms: Definition and Comparison with the Other Descriptors. *Journal of chemical information and computer sciences* 1999, 39 (4), 666–670.
- (17) McInnes, L.; Healy, J.; Melville, J. Umap: Uniform Manifold Approximation and Projection for Dimension Reduction. arXiv preprint arXiv:1802.03426 2018.
- (18) Konopka, T. Umap: Uniform Manifold Approximation and Projection.
- (19) Pogodin, P. Local and Global Data Structure Preservation in Dimensionality Reduction: A Case Study of the UMAP Algorithm. In New horizons of applied mathematics; 2025; Vol. 2, pp 105–107.
- (20) Team, R. C. R Language Definition. Vienna, Austria: R foundation for statistical computing 2000, 3 (1), 116.
- (21) Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L. D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; others. Welcome to the Tidyverse. Journal of open source software 2019, 4 (43), 1686.
- (22) Guha, R. Chemical Informatics Functionality in r. Journal of Statistical Software 2007, 18, 1–16.
- (23) Kursa, M. B. Praznik: High Performance Information-Based Feature Selection. *SoftwareX* **2021**, *16*, 100819.