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What is q-RASAR?
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v" Quantitative Read-Across Structure-Activity
Relationship (g-RASAR)

Feature 2

Feature 1

v" Derived from the concepts of QSAR and

Read-Across-based Read-Across

Similarity hypothesis

v' Similarity and error-based measures as
descriptors

Banerjee, A.; Roy, K. Mol. Divers. 2022, 26, 2847-2862
Y = f(Similarity, Chemical Features)

q Banerjee, A.; Roy, K. Chem. Res. Toxicol. 2023, 36, 446-464
q-RASAR



Workflow of q-RASAR
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q-RASAR Descriptors
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QSARs and their limitations
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Role of the ARKA descriptors

No X Y ARKA = Arithmetic Residuals
1 In K-groups Analysis

2

3 <0.75

4 2 0.5 Contributiong ) = f(X,Y) 4,2
5 Contributionys ) = f(X,Y) 3.4
6 Contributionyise = f(X,Y) 56
; (<) 2o Contributionyg = f(X,Y) 73

[Banerjee, A.; Roy, K. Environ. Sci.: Processes Impacts 2024, 26, 991-10071

Banerjee, A.; Roy, K. Environ. Sci.: Processes Impacts 2025.




Grouping strategy
in Multiclass ARKA
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Grouping strategy
in Multiclass ARKA
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Grouping strategy
in Multiclass ARKA
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Grouping strategy
in Multiclass ARKA
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Algorithm
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Contributions of descript
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Workflow of improved q
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hERG K* channel
inhibition of
chemicals

Banerjee and Roy,
Chemom Intell Lab Syst
2023, 237, 104829

Androgen
receptor
binding affinity
of endocrine
disruptors in
rats

Banerjee et al.,
Chemosphere
2022, 309, 136579

Skin sensitization potential of industrial and
environmental chemicals

Banerjee and Roy, Environ Sci: Processes Impacts
2023, 25, 1626-1644
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Aquatic toxicity
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sp.

Ghosh et al., Aquat
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106776

Aquatic toxicity
of pesticides
against Rainbow
trout

Ghosh et al., Aquat
Toxicol 2023, 265,
106776
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Results

Table 1 Model statistics of the previous QSAR, previous g-RASAR, hybrid ARKA and ARKA-RASAR models”

Training set Test set
Dataset Model Npese  Mrrain R QLoo~ MAEu.in MAEj g0 Mress Qu°  Qp® MAE., Model specifications
1 PLS (LV=3) 8 103 0.737 0.68  0.456 0.497 44  0.582 0.582 0.539  Previous QSAR
Univariate 1 103 0.675 0.657 0.434 0.444 44 0.633 0.633 0.483 Previous ¢-RASAR
PLS (LV=4) 5 103 0.728  0.685  0.472 0.507 44  0.609 0.609 0.527  Hybrid ARKA
| MLR 4 103 0.724 0.684 0.461 0.488 44  0.675 0.675 0.472  ARKA-RASAR |
2 PLS (LV=23) 15 196  0.635 0.549 0.555 0.607 65 0.485 0.484 0.695 Previous QSAR (without removal)
PLS (LV=13) 15 196  0.635 0.549 0.555 0.607 63 0.575 0.574 0.642  Previous QSAR
PLS (LV=4) 12 196  0.608 0.546 0.581 0.623 63 0.66 0.66 0.548  Previous ¢-RASAR
MLR 7 196  0.624 0.591 0.559 0.583 65 0.487 0.486 0.687 Hybrid ARKA (without removal)
MLR 7 196 0.624 0.591  0.559 0.583 63 0.578 0.577 0.634  Hybrid ARKA
| PLS (LV =10) 12 196  0.663 0.623  0.534 0.568 63 0.67  0.669 0.557  ARKA-RASAR |
PLS (LV=10) 12 196  0.663 0.623 0.534 0.568 65 0.574 0.574 0.612  ARKA-RASAR (without removal)
3 PLS (LV=19) 10 133 0.696 0.644 0.41 0.445 47 0.526 0.524 0.562 Previous QSAR (without removal)
PLS (LV=19) 10 133 0.696 0.644 0.41 0.445 44 0.586 0.585 0.528 Previous QSAR
PLS(LV=28) 9 133 0.695 0.649 0.406 0.436 44 0.607 0.606 0.523 Previous g-RASAR
MLR 7 133 0.703 0.672 0.399 0.421 47 0.561 0.559 0.55 Hybrid ARKA (without removal)
MLR 7 133 0.703  0.672  0.399 0.421 44  0.602 0.601 0.526  Hybrid ARKA
| MLR 8 133 0.708 0.673  0.395 0.422 44 0.607 0.606 0.524  ARKA-RASAR |
MLR 8 133 0.708 0.673 0.395 0.422 47 0.563 0.561 0.55 ARKA-RASAR (without removal)
4 PLS (LV=3) 8 102 0.679 0.62  0.763 0.839 34 0.703 0.658 0.678  Previous QSAR
PLS (LV=23) 8 102 0.67 0.598 0.767 0.845 34 0.74  0.701 0.644 Previous g-RASAR
PLS (IV=75] 6 102 0.684 0.647 _ 0.756 0.804 34 0.7 0.655__0.697 __ Hybrid ARKA
PLS (LV=5) 8 102 0.706  0.649  0.742 0.805 34 0.708_0.664 0.682 _ ARKA-RASAR |
5 PLS (LV=15) 8 537  0.534 0.515 0.783 0.797 178 0.551 0.541 0.752 Previous QSAR
PLS (LV=4) 8 537 0.52  0.504 0.79 0.804 178 0.588 0.579 0.715 Previous ¢-RASAR
MLR 4 537 0.52  0.51  0.795 0.802 178  0.561 0.552  0.749  Hybrid ARKA
[PLS (LV=4) 7 537  0.527 0.513  0.791 0.801 178  0.58  0.571 0.729  ARKA-RASAR |

“ BOLD TEXT indicates the overall best-performing model in a dataset considering internal and external validation statistics.



Multi-Criteria
Decision Making
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Heberger K. TrAC Trends Anal Chem 2010, 29, 101-109



Multi-Criteria
Decision Making

Box-Whiskers
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Sziklai et al., Cent. Eur. J. Oper. Res. 2024



ANOVA - To ensure
unbiased observations

Source DF SS MS F p Inference

Factor 2 4 28177 7044 351.52 0.000 The datasets are significantly different
from each other

Factor 1 3 321411 107 137 5346.33 0.000 The results from the modeling

algorithms are significantly different
from each other

Interaction 12 163 826 13 652 681.27 Both the factors are inter-dependent

“ DF = degree of freedom, SS = sum of squares, MS = mean squares.

v Factor 1: Between the four different
modeling approaches (QSAR, g-RASAR,
Hybrid ARKA, ARKA-RASAR)

Inferences

1 Bias due to the datasets is absent

v' Factor 2: Between the five different
datasets

O Modeling algorithms are not
similar

[ Snedecor and Cochran, Statistical Methods, 8t Edition, Wiley-Blackwell




One-way ANOVA analysi

ARZARSAR3IRS R4 RI ARIA3 Rl AR4AZ R3 Q1 A4 Q5 Al Q2 Q3 Q4 A5

Aim

L To show that the results obtained
from most of the models in the
five datasets were significantly

different from each other

v’ Least Significant Difference (LSD)
procedure coupled with One-way
ANOVA, using Fisher’s test (95% CI)

of the SRD values

Bolton S, Statistics, in: Remington JP.
Remington: the Science and Practice of
Pharmacy (ed. D. Troy), Lippincott Williams &
Wilkins, Baltimore, 2006.




Variable Importance Plo

ARKA-RASAR Dacaset/] ARKA-RASAR Dataset 2

Inferences

O ARKA descriptors appear to be
the most important.
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Real world effectiveness
in data gap filling

Expt. Fish LC;, Expt. GHS ECOSARLC,, ECOSAR

SI  Metabolite SMILES code (mg L) class (mg L) GHS class
1 2-Ethyl-4,5,6,7-tetrahydro-4-oxo-6- CCclnc2c(01)CC(CC2=0) >0.61 1 0.36 1
(2,4,6-trimethylphenyl)benzoxazole  c3c(cc(ce3C)C)C

2 Acifluorfen Clec2cec(cec20c1ce(C(=0)0)c([N+] 54 3 33.16 3
([0-))=0))cct)C(F)(FIE

3  Chlordecone CIC54C(=0)c1(cl)cz(ClCs(Chc3(cl)  o0.02 1 0.99 1
ca(cnci(cnez(clcs(clcl

4 Ethion S=P(SCSP(=S)(0CC)OCC)(0CC)OCC 0.5 1 0.07 1

5  Fipronil sulfide clc(ce(c(c1Clin2¢(c(c(n2)CH#N)SC(F) 0.03 1 0.031 1
(F)F)N)CI)C(F)(F)F

6  loxynil Iclee(CHN)ce(I)c10 8.5 2 2.14 2

7  Triadimefon CC(C)(C)C(=0)C(N1C=NC=N1) 4.08 13.76

0C2=CC=C(C=C2)Cl

Burden et al., Regulat Toxicol Pharmacol 2016, 80, 241-246
(A curated set of 150 pesticide metabolites)

ARKA-RASAR models of Datasets 4 and 5
(Datasets for fish toxicity)
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A Java-based tool to
compute multiclass AR

descriptors  My|tiClass ARKA

Mu”fdas;m RTe MultiClass ARKA

LR i R R This tool calculates multiple ARKA descriptors based on the user's requirements to develop
Ot 2 it evidualsin regression-based QSAR models. This considers different contributions of the relevant
‘ J ‘ K-Groups features to different response ranges of the training set within a particular regression
b Auulwis model.

Download link (Uploaded on 19.12.2024; Unrestricted from April 03, 2025)

Reference: Banerjee A, Roy K, The multiclass ARKA framework for developing improved
g-RASAR models for environmental toxicity endpoints. Environ Sci Process Impacts, 2025,

https://doi.org/10.1039/DSEMO0068H

To use this tool, please fill in https:/forms.gle/1r3TTy/RmZCQvgBt5 and sign the License

agreement form

[ https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/arithmetic-residuals-in-k-groups-analysis-arka




A Java-based tool to
compute RASAR descrip
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Banerjee A, Roy K, Mol Divers, 26, 2022, 2847-2862, DOI: 10.1007/s11030-022-10478-6

Banerjee A, Roy K, Chem Res Toxicol, 36, 2023, 446-464, DOI: 10.1021/acs.chemrestox.2c00374
Software developed by Arkaprava Banerjee (arka banerjee16@gmail com)

[ https://sites.google.com/jadavpuruniversity.in/dtc-lab-software/home '
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Arkaprava Banerjee ©* and Hunal Roy ©*

The continuous quest for the guick, accurate, and efficient methods for fillng the gaps in the toxicity data of
commercial chamicals is the need of the hour. Thus, it has become essential to develop simple and
improved modeling strategies that aim to generate mere accurate predictions. Recently, quantitative
Read-Across Structure-Activity Relationship (g-RASAR) modeling has been reported to enhance the
external predictivity of G5AR models. However, the cross-validation metrics of some g-RASAR models
show compromised values compared to those of the corresponding QSAR models. We report here an
impraved g-RASAR workflow coupled with the Arithmetic Residuals in K-groups Analysis [ARKA)
framewvork. This improved workflow (ARKA-RASAR) considers twa important aspects: the contribution of
different QSAR descriptors to different experimental response ranges, and the igentification of similarity
among close congeners based on both the selected QSAR descriptors and the contribution of different
QSAR descriptors to different experimental response ranges. A simple, free, and wser-friendly Java-based
tool, Multiclass ARKA-v1.0, has been developed to compute the multiclass ARKA descriptors. In this
study, five different toxicity datasels previously used for the developrment of QSAR and g-BASAR models
were considered. We developed hybrid ARKA models that consist of a combination of GSAR descriptors
and ARKA descriptors. These hybrid feature spaces were used to compute RASAR descriptors and
devalop ARKA-RASAR models. We used the same modeling strategies used to develop the praviously
reported QO5AR and g-RASAR models for a fair comparison. Additionally, these modeling algorithms are
straightforward, reproducible, and transferable. & multi-criteria decislon-making statistical approach, the
Surn of Ranking Differences (SRD), indicated that the ARKA-RASAR models are the best-performing
models, considering training, test, and cross-validation statistics. The least significant difference
procedure ensured that the SRD values were significantly different for most models, presenting an
unbiased workflow. True external validation using a set of pesticide metabolites and predicting their
early-stage acute fish toxicity using relevant ARKA-RASAR models was also carried cut and yielded
encouraging results. The promising results and the ease of computation of ARKA and RASAR descriptors
using our tools suggest that the ARKA-BASAR modeling framework may be a potential choice for
rsc lifespi devaloping highly robust and predictive madels for filling the gaps in environmental texicity data.
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Environmental significance

Due to limited availability of guantitative environmental toxieity data for existing and sewer chemicals, computational-moedel-derived data provides an alter-
native approach for flling gaps in the data. However, developlng meaningful statistical models using Umited quantitative environmental toxicity data is guite
challenging. The problem of small data set classification modeling of ecotoxicity endpolnes was previously addressed by introducing the concept of Arithmetic
Residuals in Fgroups Analysis [ARKA) as a novel method of supervised dimensionality reduction. Here, a multiclass-ARKA framework s introduced for
develaping robust and predictive regression-based quantitative read-across-siructure-activity relationship [g-RASAR) models to deal with limited guantitative
environmental walelty data.
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The book on g-RASAR

4 A

O Introduces the reader to a novel
cheminformatic workflow

O Presents the genesis and model
development

Q Includes practical examples and

K software tools /

SpringerBriefs in Molecular Science
Kunal Roy - Arkaprava Banerjee

A Path to Predictive
Cheminformatics
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The book on activity cli

/EI Provides an introduction to the concepts
of activity cliffs

 Details the impact of activity cliffs on the
modelability of data sets and the
prediction quality of QSAR models

L Analyzes dataset modelability, defining

and identifying activity cliffs

\ the applicability domain of QSAR models/

SpringerBriefs in Molecular Science

Kunal Roy - Arkaprava Banerjee
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