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Breast cancer and Human epidermal growth factor receptor 2 (HER2)
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Figure 1. Normal breast cancer cell and abnormal Figure 2. Signaling pathways activated by
breast cancer cell (HER2 overexpressing). HER family receptors.
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Peptides in breast cancer therapy
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Figure 3. Anticancer peptides and their role as targeted therapy in breast cancer.

Das A, Adhikari S, Deka D, Bisgin A, Paul S, Balidya N, et al. An updated review on recent advances in the usage of novel therapeutic peptides for breast
cancer treatment. Int J Pept Res Ther. 2023; 29(2): 1-17.
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To Implement structure-based pharmacophore modeling to design a series of
peptides targeting HER2, evaluate their affinity for the receptor by in silico methods

and obtain the most promising candidates by solid-phase chemical synthesis.
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Solid-phase peptide synthesis
= polymeric support Multiple washes with DMF / IPA / DCM
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Pharmacophoric map targeting HER2

H Hydrophobic (3)

PI | Positive ionization site (3)
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Figure 4. Structure-based pharmacophore map targeting HER2 (HER2 residues are shown in white).



Molecular docking and prediction of allergenic and toxic properties

Table 1. Results of in silico evaluations for the top-ranked HER2-targeted peptides in virtual screening.

Ligand Scout 4.5 HPEZE,OCK FlexPepDock &ﬁg’;"sﬂ‘) AllerTOPv. 2.0  ToxinPred
. % pharmacophore AG Allergenici Toxici

D Peptide sequence P fit P Score Score (kcal/mol) pregictior:y predictgn
PHER37 MFGRQHCIR 45.52 -158.503 -967.090 -49.27 Non-allergen Non-toxic
PHER19 AWVCNRIDG 45.16 -152.316 -964.597 -38.26 Non-allergen Non-toxic
PHER14 CIDMKLAYLV 43.59 -146.642 -966.084 -30.69 Allergen Non-toxic
PHER27 YMFMKLGHTS 38.7 -171.679 -957.576 -19.5 Allergen Non-toxic
PHER77 ASQFNDVNTAVAW 38.4 -167.473 -967.391 -34.58 Allergen Non-toxic
PHER47 REMNHIVTVN 38.37 -166.825 -967.594 -33.89 Non-allergen Non-toxic
PHER4 LKGFTRT 38.27 -149.875 -962.026 -25.28 Non-allergen Non-toxic
PHERS KYNCRITVH 38.25 -153.423 -965.826 -28.95 Allergen Non-toxic
PHERS5 RHGFTYLVK 38.19 -193.695 -965.380 -33.81 Non-allergen Non-toxic

PHER78 ASGFNIKDTYIHW 36.94 -177.587 -960.829 -52.26 Non-allergen Non-toxic




PHER37 binding mode on HER2
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Figure 6. Binding mode of
AG = -49.27 kcal/mol Trastuzumab residues

(magenta) on HER2.

Figure 5. Docking of PHER37 peptide (blue) and its
binding mode with HERZ2 residues (white).
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Structural characterization
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Conclusion

Pharmacophore modeling based on the structure of the HER2/Trastuzumab complex
and molecular docking enabled the design and identification of new peptide sequences
targeting HER2, from which the most promising (PHER37) was obtained by solid-phase
chemical synthesis. The peptide obtained is a potential candidate for its evaluation on
breast cancer cell lines and for possible use in therapies targeting this disease.
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