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Introduction

• NECESSITY: Accelerate the discovery of viable drug-like candidates 
AND save time, human, and money resources  

• Generate a small molecule, known as ligand, that is  
• chemically valid, able to be synthesized,  

not harmful, binding with a target 
• PROBLEM: Most models show high metrics on popular 

generative benchmarks (GuacaMol1, MOSES2), but often  
fail to translate into medicinally plausible compounds 

• SOLUTION: Comprehensive, practice-oriented benchmark for 
evaluation under realistic medicinal chemistry constraints 

• PRESENTING: Molecule generators and their performance evaluation via Five-Stage Filtering Pipeline. 
Reproducible pipelines will be released on our GitHub (https://github.com/LigandPro)
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Information about  
known ligands that binds to the  

target molecule. 

For KRAS G12D we used  
583 valid molecules1  

 
1Mohammad Ghazi Vakili, Christoph Gorgulla, Jamie Snider, AkshatKumar Nigam, Dmitry Bezrukov, Daniel Varoli, Alex Aliper, Daniil Polykovsky, Krishna M Padmanabha Das, Huel Cox Iii, et al. Quantum-
computing-enhanced algorithm unveils potential kras inhibitors. Nature Biotechnology, pp. 1–6, 2025. 
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Information about target  
(pocket, amino acid sequence, etc) / AND  

small molecules that binds to it 

Information about  
known ligands that binds to the  

target molecule. 

For KRAS G12D we used  
583 valid molecules1  

 
1Mohammad Ghazi Vakili, Christoph Gorgulla, Jamie Snider, AkshatKumar Nigam, Dmitry Bezrukov, Daniel Varoli, Alex Aliper, Daniil Polykovsky, Krishna M Padmanabha Das, Huel Cox Iii, et al. Quantum-
computing-enhanced algorithm unveils potential kras inhibitors. Nature Biotechnology, pp. 1–6, 2025. 
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Each model generates 10,000 unique and valid molecules for 
further evaluation

Table 1: Taxonomy of molecular generators considered in our benchmark, by model class (rows) and primary 
input representation (columns)

source: provided by the author
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18 evaluation criteria

source: provided by the author
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A molecule should pass all 
physicochemical descriptors 
simultaneously to pass the 1st 
filtering stage

18 evaluation criteria

source: provided by the author
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A molecule should pass all 
physicochemical descriptors 
simultaneously to pass the 1st 
filtering stage

18 evaluation criteria

Molecules passed Stage 1 go to the Stage 2  source: provided by the author
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5 rule sets and  
~2500 SMARTS patterns 
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Azo (dyes, pigments)

Fluorinated chains, PFAS

Disulfide (redox-active; 
organodisulfides are 
skin sensitizers) 

Isocyanate (respiratory 
and skin sensitizer) 

Catechol (sensitize skin 
and generate oxidative 
stress) 

Toxic or reactive chemical substructures

5 rule sets and  
~2500 SMARTS patterns 
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5 rule sets and  
~2500 SMARTS patterns 

A molecule should not contain ANY 
of prohibited SMARTS patterns to 
pass the 2nd filtering stage

source: provided by the author Molecules passed Stage 2 go to the Stage 3  
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4 evaluation criteria 

source: provided by the author
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4 evaluation criteria 

source: provided by the author

SA score - Synthetic Accessibility score1 - synthetic complexity score from 1 (easy) to 10 (hard).  
RA score - Retrosynthetic Accessibility score2 - probability of being a synthetic path for a compound. 
SYBA score - Synthetic Bayesian Accessibility score3 - classifier as easy or hard to synthesize. 
AiZynthFinder4 - machine-learning-guided retrosynthetic workflow.

1Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. Journal of cheminformatics, 1(1):8, 2009. 
2Amol Thakkar, Veronika Chadimova ́, Esben Jannik Bjerrum, Ola Engkvist, and Jean-Louis Reymond. Retrosynthetic accessibility score (rascore)–rapid machine learned synthesizability classification from ai driven retrosynthetic planning. Chemical science, 12(9):3339–3349, 2021. 
3Milan Vorsˇila ́k, Michal Kola ́ˇr, Ivan Cˇmelo, and Daniel Svozil. Syba: Bayesian estimation of synthetic accessibility of organic compounds. Journal of cheminformatics, 12(1):35, 2020. 
4Samuel Genheden, Amol Thakkar, Veronika Chadimova ́, Jean-Louis Reymond, Ola Engkvist, and Esben Bjerrum. Aizynthfinder: a fast, robust and flexible open-source software for retrosynthetic planning. Journal of cheminformatics, 12(1):70, 2020.
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4 evaluation criteria 

source: provided by the author

A molecule should pass all 
synthetic feasibility criteria 
simultaneously to pass the 3rd 
filtering stage

1Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. Journal of cheminformatics, 1(1):8, 2009. 
2Amol Thakkar, Veronika Chadimova ́, Esben Jannik Bjerrum, Ola Engkvist, and Jean-Louis Reymond. Retrosynthetic accessibility score (rascore)–rapid machine learned synthesizability classification from ai driven retrosynthetic planning. Chemical science, 12(9):3339–3349, 2021. 
3Milan Vorsˇila ́k, Michal Kola ́ˇr, Ivan Cˇmelo, and Daniel Svozil. Syba: Bayesian estimation of synthetic accessibility of organic compounds. Journal of cheminformatics, 12(1):35, 2020. 
2Samuel Genheden, Amol Thakkar, Veronika Chadimova ́, Jean-Louis Reymond, Ola Engkvist, and Esben Bjerrum. Aizynthfinder: a fast, robust and flexible open-source software for retrosynthetic planning. Journal of cheminformatics, 12(1):70, 2020.

 

SA score - Synthetic Accessibility score1 - synthetic complexity score from 1 (easy) to 10 (hard).  
RA score - Retrosynthetic Accessibility score2 - probability of being a synthetic path for a compound. 
SYBA score - Synthetic Bayesian Accessibility score3 - classifier as easy or hard to synthesize. 
AiZynthFinder4 - machine-learning-guided retrosynthetic workflow.
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4 evaluation criteria 
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A molecule should pass all 
synthetic feasibility criteria 
simultaneously to pass the 3rd 
filtering stage

Molecules passed Stage 3 go to the Stage 4
1Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. Journal of cheminformatics, 1(1):8, 2009. 
2Amol Thakkar, Veronika Chadimova ́, Esben Jannik Bjerrum, Ola Engkvist, and Jean-Louis Reymond. Retrosynthetic accessibility score (rascore)–rapid machine learned synthesizability classification from ai driven retrosynthetic planning. Chemical science, 12(9):3339–3349, 2021. 
3Milan Vorsˇila ́k, Michal Kola ́ˇr, Ivan Cˇmelo, and Daniel Svozil. Syba: Bayesian estimation of synthetic accessibility of organic compounds. Journal of cheminformatics, 12(1):35, 2020. 
2Samuel Genheden, Amol Thakkar, Veronika Chadimova ́, Jean-Louis Reymond, Ola Engkvist, and Esben Bjerrum. Aizynthfinder: a fast, robust and flexible open-source software for retrosynthetic planning. Journal of cheminformatics, 12(1):70, 2020.

 

SA score - Synthetic Accessibility score1 - synthetic complexity score from 1 (easy) to 10 (hard).  
RA score - Retrosynthetic Accessibility score2 - probability of being a synthetic path for a compound. 
SYBA score - Synthetic Bayesian Accessibility score3 - classifier as easy or hard to synthesize. 
AiZynthFinder4 - machine-learning-guided retrosynthetic workflow.
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A molecule should have at least one good 
pose at each docking tool simultaneously 
to pass the 4th filtering stage

source: provided by the author Molecules passed Stage 4 go to the Stage 5  

Docking upper bound for smina and 
GNINA -6.5kcal/mol. 
Boltz-2 upper bound is 100 µM.
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Evaluation criteria: 
1) Pose validation by geometry using PoseBusters1 

2) Pose validation by conformational energy using PoseBusters1 
3) Hydrogen bond donors and acceptors using ProLIF2 and RDKit3 
4) Pocket burial using RDKit3 
5) Target-specific interaction with Asp12 using ProLIF2 

A molecule should pass each evaluation criteria simultaneously to pass 
the 5th filtering stage and the entire pipeline.

source: provided by the author
1Martin Buttenschoen, Garrett M Morris, and Charlotte M Deane. Posebusters: Ai-based docking methods fail to generate physically valid poses or generalise to novel sequences. Chemical Science, 15(9):3130–3139, 2024. 
2Ce ́dric Bouysset and Se ́bastien Fiorucci. Prolif: a library to encode molecular interactions as fingerprints. Journal of cheminformatics, 13(1):72, 2021. 
3Greg Landrum. Rdkit documentation. Release, 1(1-79):4, 2013. 
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Results are presented in Table 4. Although Dragonfly passes the first stage with only 27.79% of
initial molecules, the number of molecules that pass medicinal chemists evaluation is the highest
among all families, suggesting that Dragonfly is able to sample molecules that are likely to be valid
and useful. DiffSBDD, Dragonfly, DrugFlow, Pocket2Mol and TargetDiff strongly dominate other
models while passing descriptors stage. However, DiffSBDD, DrugFlow, Pocket2Mol, TargetDiff
loses more than a quarter of molecules after structural filters stage, suggesting that those models
struggle with synthesis of non toxic and pan-assay-free molecules. TargetDiff does not pass docking
and binding affinity estimation stage, and DiffSBDD does not pass medicinal chemistry evaluation
stage, while DrugFlow is the second most successful model.

Table 4: Comparison of protein-based models, each with initial number of molecules Ngen = 10,000

Stage /Model DIFFSBDD DRAGONFLY DRAGONFLY (B) DRUGFLOW POCKET2MOL PROTOBIND-DIFF RESGEN TARGETDIFF
Descriptors 3665 2779 1022 5464 2657 1466 1080 3444

Structural Filters 197 1459 218 1392 682 195 255 136
Synthesis Feasibility 24 1207 38 453 137 102 62 4

Docking & Binding Aff. 13 575 15 344 69 66 37 0
Med.Chem. Evaluation 0 227 4 62 12 7 6 0

Pass 0 227 4 62 12 7 6 0

5 DISCUSSION AND CONCLUSION

Applying the same five-stage filtration across unconditional, ligand-based, and protein-based mod-
els reveals that across 210,000 generated molecules only 969 (0.461%) of generated molecules
pass end-to-end screening. Empirically, unconditional models have the highest overall pass rate
of 0.607%, producing molecules that correlate with basic requirements of early drug discovery.
Ligand-based models achieved moderate retention with 0.41% pass rate. Protein-based models are
left with the smallest fraction of passed molecules (0.398%), with Dragonfly achieving the highest
final pass rate of 227 molecules despite low initial retention. Across all families, streepest attri-
tion occurs at synthetic feasibility (⇡ 0.2501 molecules w.r.t. descriptors filtration) and medicinal
chemistry (⇡ 0.1535 molecules w.r.t. synthesis feasibility evaluation stage) evaluation stages. This
confirms prior findings that benchmark metrics, such as validity is weak predictor of downstream
utility. The explicit retrosynthesis gate (AiZynthFinder) is therefore critical to separate benchmark
overfitting from true drug-likeness.

Our results highlight several architecture-dependent trends across molecule generators. Equivariant
diffusion models (E(3)DM, DiffSBDD, TargetDiff) exceed at encoding 3D symmetries and geo-
metric constraints, yet collapse under synthetic accessibility evaluation, suggesting that geometric
fidelity alone is insufficient for practical usage. Graph-based VAEs (JT-VAE, HierGraphVAE) bal-
ance validity and synthesizability better than other unconditional models, confirming the hypothesis
that scaffold-aware decoders reduce chemical complexity. REINVENT4 is highly sensitive to prior
choice: broad priors generalize well through the pipeline, while similarity-based or transfer-learned
priors reduce downstream retention. Genetic optimizers (MolFinder) find high-scoring candidates
without pretraining but enrich high structural alert rates, highlighting the exploration-safety trade-
off. Pharmacophore-based models (GCPG, PGMG) confirm the value of explicit interaction motif
bias, yielding high enrichment, although PGMG shows low overall pass-rate.

Our findings emphasize that standard generative benchmarks are not good proxies for real-world
performance. Optimizing for validity, synthesis, or pocket fidelity independently is insufficient for
actionable chemical space that requires alignment across all objectives simultaneously. That is why
evaluation should integrate: (i) multistage filtering pipeline (descriptors, structural alerts, synthe-
sis feasibility, docking and binding affinity, and medicinal chemistry stages); (ii) synthesis-aware
metrics beyond SA scores; and (iii) stage failures analysis.

While our pipeline integrates synthesis and docking gates, it does not yet capture long-range phar-
macokinetics, ADMET liabilities, or clinical viability. Future work should couple generative models
with multiscale predictions, and uncertainty-aware evaluation of generated molecules.

REFERENCES
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Kenneth M Merz Jr, Alanna Schepartz, and Shaomeng Wang. The ecstasy and agony of assay
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sibility stage and no candidates remain after this stage; TGM-DLM leaves with the least candidates,
mostly due to struggle with validity, filtering out most molecules on descriptors stage.

Table 2: Comparison of unconditional models, each with initial number of molecules Ngen = 10,000

Stage /Model E(3)DM HIERGRAPHVAE JT-VAE MOLER MOLGPT TGM-DLM
Descriptors 3520 3579 7586 3193 3474 1216

Structural Filters 75 1176 2765 718 1029 100
Synthesis Feasibility 0 975 1549 557 679 35

Docking & Binding Aff. 0 477 816 323 340 10
Med.Chem. Evaluation 0 53 181 65 64 1

Pass 0 53 181 65 64 1

4.2 LIGAND-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: GCPG, GENTRL, MolFinder, PGMG, and three dif-
ferent setups of REINVENT4: REINVENT4 (V), REINVENT4 (P), REINVENT4 (TL) described
below. We examine multiple REINVENT4 setups because sampling behavior depends strongly on
the learned prior and fine-tuning strategy; comparing variants isolates how prior choice and transfer
learning affect diversity, novelty, synthesizability, and downstream performance.
REINVENT4 (V) (vanilla) uses the out-of-the-box prior released by the authors, and no further
modifications applied to the model.
REINVENT4 (P) (prior) is a similarity-based REINVENT4 prior released by the authors that was
trained under a medium Tanimoto similarity sampling mode.
REINVENT4 (TL) (transfer learning) is our transfer-learned prior, fine-tuned on known
KRAS G12D inhibitors to bias sampling toward the target chemical space. Training and imple-
mentation details are provided in Appendix C.

Results are presented in Table 3. GCPG sustains the highest end-to-end retention, resulting in
110 molecules after medicinal chemists evaluation stage. REINVENT4 (V) yields more success
molecules (93) than REINVENT4 (P) and REINVENT4 (TL) with 17 and 32 molecules respec-
tively, showing that a broader prior favored downstream filtering pipeline, although sampling 10,000
molecules for REINVENT4 (V) required more attempts. PGMG underperforms early at the de-
scriptors stage and retains the fewest candidates, however, the fraction of molecules that passed
docking and binding affinity estimation stage with respect to synthetic feasibility stage is the high-
est (19/22 = 0.864), indicating that pharmacophore-based models tend to generate molecules, that
are indeed likely to capture pocket shape geometry and complementarity, but PGMG struggles with
overall molecule validity.

Table 3: Comparison of ligand-based models, each with initial number of Ngen = 10,000 molecules

Stage /Model GCPG GENTRL MOLFINDER PGMG REINVENT4 (V) REINVENT4 (P) REINVENT4 (TL)
Descriptors 6616 5669 1592 195 4089 936 1204

Structural Filters 4168 1925 366 37 1325 593 413
Synthesis Feasibility 1064 303 265 22 918 222 276

Docking & Binding Aff. 648 238 200 19 518 72 164
Med.Chem. Evaluation 110 24 7 4 93 17 32

Pass 110 24 7 4 93 17 32

4.3 PROTEIN-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: DiffSBDD, Dragonfly, Dragonfly biased (b), DrugFlow,
Pocket2Mol, ResGen, TargetDiff. We evaluated two different Dragonfly setups to investigate the
overall performance of an unmodified model provided by the authors, and a fine-tuned model biased
with only one target compound descriptors.
Dragonfly is an out-of-the-box model released by the authors with no modifications applied to the
model.
Dragonfly (b) (biased) leverages built-in ability to condition sampling on target compound descrip-
tors. Specifically, bias is applied toward molecular weight, number of rotatable bonds, hydrogen
bond donors and acceptors, topological polar surface area, and logP, thereby steering the generation
toward molecules with physicochemical properties aligned with the target profile.

7

Table 2: Comparison of ligand-based models, each with initial number of Ngen = 10,000 molecules

12 models and 15 model setups
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Results are presented in Table 4. Although Dragonfly passes the first stage with only 27.79% of
initial molecules, the number of molecules that pass medicinal chemists evaluation is the highest
among all families, suggesting that Dragonfly is able to sample molecules that are likely to be valid
and useful. DiffSBDD, Dragonfly, DrugFlow, Pocket2Mol and TargetDiff strongly dominate other
models while passing descriptors stage. However, DiffSBDD, DrugFlow, Pocket2Mol, TargetDiff
loses more than a quarter of molecules after structural filters stage, suggesting that those models
struggle with synthesis of non toxic and pan-assay-free molecules. TargetDiff does not pass docking
and binding affinity estimation stage, and DiffSBDD does not pass medicinal chemistry evaluation
stage, while DrugFlow is the second most successful model.

Table 4: Comparison of protein-based models, each with initial number of molecules Ngen = 10,000

Stage /Model DIFFSBDD DRAGONFLY DRAGONFLY (B) DRUGFLOW POCKET2MOL PROTOBIND-DIFF RESGEN TARGETDIFF
Descriptors 3665 2779 1022 5464 2657 1466 1080 3444

Structural Filters 197 1459 218 1392 682 195 255 136
Synthesis Feasibility 24 1207 38 453 137 102 62 4

Docking & Binding Aff. 13 575 15 344 69 66 37 0
Med.Chem. Evaluation 0 227 4 62 12 7 6 0

Pass 0 227 4 62 12 7 6 0

5 DISCUSSION AND CONCLUSION

Applying the same five-stage filtration across unconditional, ligand-based, and protein-based mod-
els reveals that across 210,000 generated molecules only 969 (0.461%) of generated molecules
pass end-to-end screening. Empirically, unconditional models have the highest overall pass rate
of 0.607%, producing molecules that correlate with basic requirements of early drug discovery.
Ligand-based models achieved moderate retention with 0.41% pass rate. Protein-based models are
left with the smallest fraction of passed molecules (0.398%), with Dragonfly achieving the highest
final pass rate of 227 molecules despite low initial retention. Across all families, streepest attri-
tion occurs at synthetic feasibility (⇡ 0.2501 molecules w.r.t. descriptors filtration) and medicinal
chemistry (⇡ 0.1535 molecules w.r.t. synthesis feasibility evaluation stage) evaluation stages. This
confirms prior findings that benchmark metrics, such as validity is weak predictor of downstream
utility. The explicit retrosynthesis gate (AiZynthFinder) is therefore critical to separate benchmark
overfitting from true drug-likeness.

Our results highlight several architecture-dependent trends across molecule generators. Equivariant
diffusion models (E(3)DM, DiffSBDD, TargetDiff) exceed at encoding 3D symmetries and geo-
metric constraints, yet collapse under synthetic accessibility evaluation, suggesting that geometric
fidelity alone is insufficient for practical usage. Graph-based VAEs (JT-VAE, HierGraphVAE) bal-
ance validity and synthesizability better than other unconditional models, confirming the hypothesis
that scaffold-aware decoders reduce chemical complexity. REINVENT4 is highly sensitive to prior
choice: broad priors generalize well through the pipeline, while similarity-based or transfer-learned
priors reduce downstream retention. Genetic optimizers (MolFinder) find high-scoring candidates
without pretraining but enrich high structural alert rates, highlighting the exploration-safety trade-
off. Pharmacophore-based models (GCPG, PGMG) confirm the value of explicit interaction motif
bias, yielding high enrichment, although PGMG shows low overall pass-rate.

Our findings emphasize that standard generative benchmarks are not good proxies for real-world
performance. Optimizing for validity, synthesis, or pocket fidelity independently is insufficient for
actionable chemical space that requires alignment across all objectives simultaneously. That is why
evaluation should integrate: (i) multistage filtering pipeline (descriptors, structural alerts, synthe-
sis feasibility, docking and binding affinity, and medicinal chemistry stages); (ii) synthesis-aware
metrics beyond SA scores; and (iii) stage failures analysis.

While our pipeline integrates synthesis and docking gates, it does not yet capture long-range phar-
macokinetics, ADMET liabilities, or clinical viability. Future work should couple generative models
with multiscale predictions, and uncertainty-aware evaluation of generated molecules.
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sibility stage and no candidates remain after this stage; TGM-DLM leaves with the least candidates,
mostly due to struggle with validity, filtering out most molecules on descriptors stage.

Table 2: Comparison of unconditional models, each with initial number of molecules Ngen = 10,000

Stage /Model E(3)DM HIERGRAPHVAE JT-VAE MOLER MOLGPT TGM-DLM
Descriptors 3520 3579 7586 3193 3474 1216

Structural Filters 75 1176 2765 718 1029 100
Synthesis Feasibility 0 975 1549 557 679 35

Docking & Binding Aff. 0 477 816 323 340 10
Med.Chem. Evaluation 0 53 181 65 64 1

Pass 0 53 181 65 64 1

4.2 LIGAND-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: GCPG, GENTRL, MolFinder, PGMG, and three dif-
ferent setups of REINVENT4: REINVENT4 (V), REINVENT4 (P), REINVENT4 (TL) described
below. We examine multiple REINVENT4 setups because sampling behavior depends strongly on
the learned prior and fine-tuning strategy; comparing variants isolates how prior choice and transfer
learning affect diversity, novelty, synthesizability, and downstream performance.
REINVENT4 (V) (vanilla) uses the out-of-the-box prior released by the authors, and no further
modifications applied to the model.
REINVENT4 (P) (prior) is a similarity-based REINVENT4 prior released by the authors that was
trained under a medium Tanimoto similarity sampling mode.
REINVENT4 (TL) (transfer learning) is our transfer-learned prior, fine-tuned on known
KRAS G12D inhibitors to bias sampling toward the target chemical space. Training and imple-
mentation details are provided in Appendix C.

Results are presented in Table 3. GCPG sustains the highest end-to-end retention, resulting in
110 molecules after medicinal chemists evaluation stage. REINVENT4 (V) yields more success
molecules (93) than REINVENT4 (P) and REINVENT4 (TL) with 17 and 32 molecules respec-
tively, showing that a broader prior favored downstream filtering pipeline, although sampling 10,000
molecules for REINVENT4 (V) required more attempts. PGMG underperforms early at the de-
scriptors stage and retains the fewest candidates, however, the fraction of molecules that passed
docking and binding affinity estimation stage with respect to synthetic feasibility stage is the high-
est (19/22 = 0.864), indicating that pharmacophore-based models tend to generate molecules, that
are indeed likely to capture pocket shape geometry and complementarity, but PGMG struggles with
overall molecule validity.

Table 3: Comparison of ligand-based models, each with initial number of Ngen = 10,000 molecules

Stage /Model GCPG GENTRL MOLFINDER PGMG REINVENT4 (V) REINVENT4 (P) REINVENT4 (TL)
Descriptors 6616 5669 1592 195 4089 936 1204

Structural Filters 4168 1925 366 37 1325 593 413
Synthesis Feasibility 1064 303 265 22 918 222 276

Docking & Binding Aff. 648 238 200 19 518 72 164
Med.Chem. Evaluation 110 24 7 4 93 17 32

Pass 110 24 7 4 93 17 32

4.3 PROTEIN-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: DiffSBDD, Dragonfly, Dragonfly biased (b), DrugFlow,
Pocket2Mol, ResGen, TargetDiff. We evaluated two different Dragonfly setups to investigate the
overall performance of an unmodified model provided by the authors, and a fine-tuned model biased
with only one target compound descriptors.
Dragonfly is an out-of-the-box model released by the authors with no modifications applied to the
model.
Dragonfly (b) (biased) leverages built-in ability to condition sampling on target compound descrip-
tors. Specifically, bias is applied toward molecular weight, number of rotatable bonds, hydrogen
bond donors and acceptors, topological polar surface area, and logP, thereby steering the generation
toward molecules with physicochemical properties aligned with the target profile.
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Results are presented in Table 4. Although Dragonfly passes the first stage with only 27.79% of
initial molecules, the number of molecules that pass medicinal chemists evaluation is the highest
among all families, suggesting that Dragonfly is able to sample molecules that are likely to be valid
and useful. DiffSBDD, Dragonfly, DrugFlow, Pocket2Mol and TargetDiff strongly dominate other
models while passing descriptors stage. However, DiffSBDD, DrugFlow, Pocket2Mol, TargetDiff
loses more than a quarter of molecules after structural filters stage, suggesting that those models
struggle with synthesis of non toxic and pan-assay-free molecules. TargetDiff does not pass docking
and binding affinity estimation stage, and DiffSBDD does not pass medicinal chemistry evaluation
stage, while DrugFlow is the second most successful model.

Table 4: Comparison of protein-based models, each with initial number of molecules Ngen = 10,000

Stage /Model DIFFSBDD DRAGONFLY DRAGONFLY (B) DRUGFLOW POCKET2MOL PROTOBIND-DIFF RESGEN TARGETDIFF
Descriptors 3665 2779 1022 5464 2657 1466 1080 3444

Structural Filters 197 1459 218 1392 682 195 255 136
Synthesis Feasibility 24 1207 38 453 137 102 62 4

Docking & Binding Aff. 13 575 15 344 69 66 37 0
Med.Chem. Evaluation 0 227 4 62 12 7 6 0

Pass 0 227 4 62 12 7 6 0

5 DISCUSSION AND CONCLUSION

Applying the same five-stage filtration across unconditional, ligand-based, and protein-based mod-
els reveals that across 210,000 generated molecules only 969 (0.461%) of generated molecules
pass end-to-end screening. Empirically, unconditional models have the highest overall pass rate
of 0.607%, producing molecules that correlate with basic requirements of early drug discovery.
Ligand-based models achieved moderate retention with 0.41% pass rate. Protein-based models are
left with the smallest fraction of passed molecules (0.398%), with Dragonfly achieving the highest
final pass rate of 227 molecules despite low initial retention. Across all families, streepest attri-
tion occurs at synthetic feasibility (⇡ 0.2501 molecules w.r.t. descriptors filtration) and medicinal
chemistry (⇡ 0.1535 molecules w.r.t. synthesis feasibility evaluation stage) evaluation stages. This
confirms prior findings that benchmark metrics, such as validity is weak predictor of downstream
utility. The explicit retrosynthesis gate (AiZynthFinder) is therefore critical to separate benchmark
overfitting from true drug-likeness.

Our results highlight several architecture-dependent trends across molecule generators. Equivariant
diffusion models (E(3)DM, DiffSBDD, TargetDiff) exceed at encoding 3D symmetries and geo-
metric constraints, yet collapse under synthetic accessibility evaluation, suggesting that geometric
fidelity alone is insufficient for practical usage. Graph-based VAEs (JT-VAE, HierGraphVAE) bal-
ance validity and synthesizability better than other unconditional models, confirming the hypothesis
that scaffold-aware decoders reduce chemical complexity. REINVENT4 is highly sensitive to prior
choice: broad priors generalize well through the pipeline, while similarity-based or transfer-learned
priors reduce downstream retention. Genetic optimizers (MolFinder) find high-scoring candidates
without pretraining but enrich high structural alert rates, highlighting the exploration-safety trade-
off. Pharmacophore-based models (GCPG, PGMG) confirm the value of explicit interaction motif
bias, yielding high enrichment, although PGMG shows low overall pass-rate.

Our findings emphasize that standard generative benchmarks are not good proxies for real-world
performance. Optimizing for validity, synthesis, or pocket fidelity independently is insufficient for
actionable chemical space that requires alignment across all objectives simultaneously. That is why
evaluation should integrate: (i) multistage filtering pipeline (descriptors, structural alerts, synthe-
sis feasibility, docking and binding affinity, and medicinal chemistry stages); (ii) synthesis-aware
metrics beyond SA scores; and (iii) stage failures analysis.

While our pipeline integrates synthesis and docking gates, it does not yet capture long-range phar-
macokinetics, ADMET liabilities, or clinical viability. Future work should couple generative models
with multiscale predictions, and uncertainty-aware evaluation of generated molecules.
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sibility stage and no candidates remain after this stage; TGM-DLM leaves with the least candidates,
mostly due to struggle with validity, filtering out most molecules on descriptors stage.

Table 2: Comparison of unconditional models, each with initial number of molecules Ngen = 10,000

Stage /Model E(3)DM HIERGRAPHVAE JT-VAE MOLER MOLGPT TGM-DLM
Descriptors 3520 3579 7586 3193 3474 1216

Structural Filters 75 1176 2765 718 1029 100
Synthesis Feasibility 0 975 1549 557 679 35

Docking & Binding Aff. 0 477 816 323 340 10
Med.Chem. Evaluation 0 53 181 65 64 1

Pass 0 53 181 65 64 1

4.2 LIGAND-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: GCPG, GENTRL, MolFinder, PGMG, and three dif-
ferent setups of REINVENT4: REINVENT4 (V), REINVENT4 (P), REINVENT4 (TL) described
below. We examine multiple REINVENT4 setups because sampling behavior depends strongly on
the learned prior and fine-tuning strategy; comparing variants isolates how prior choice and transfer
learning affect diversity, novelty, synthesizability, and downstream performance.
REINVENT4 (V) (vanilla) uses the out-of-the-box prior released by the authors, and no further
modifications applied to the model.
REINVENT4 (P) (prior) is a similarity-based REINVENT4 prior released by the authors that was
trained under a medium Tanimoto similarity sampling mode.
REINVENT4 (TL) (transfer learning) is our transfer-learned prior, fine-tuned on known
KRAS G12D inhibitors to bias sampling toward the target chemical space. Training and imple-
mentation details are provided in Appendix C.

Results are presented in Table 3. GCPG sustains the highest end-to-end retention, resulting in
110 molecules after medicinal chemists evaluation stage. REINVENT4 (V) yields more success
molecules (93) than REINVENT4 (P) and REINVENT4 (TL) with 17 and 32 molecules respec-
tively, showing that a broader prior favored downstream filtering pipeline, although sampling 10,000
molecules for REINVENT4 (V) required more attempts. PGMG underperforms early at the de-
scriptors stage and retains the fewest candidates, however, the fraction of molecules that passed
docking and binding affinity estimation stage with respect to synthetic feasibility stage is the high-
est (19/22 = 0.864), indicating that pharmacophore-based models tend to generate molecules, that
are indeed likely to capture pocket shape geometry and complementarity, but PGMG struggles with
overall molecule validity.

Table 3: Comparison of ligand-based models, each with initial number of Ngen = 10,000 molecules

Stage /Model GCPG GENTRL MOLFINDER PGMG REINVENT4 (V) REINVENT4 (P) REINVENT4 (TL)
Descriptors 6616 5669 1592 195 4089 936 1204

Structural Filters 4168 1925 366 37 1325 593 413
Synthesis Feasibility 1064 303 265 22 918 222 276

Docking & Binding Aff. 648 238 200 19 518 72 164
Med.Chem. Evaluation 110 24 7 4 93 17 32

Pass 110 24 7 4 93 17 32

4.3 PROTEIN-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: DiffSBDD, Dragonfly, Dragonfly biased (b), DrugFlow,
Pocket2Mol, ResGen, TargetDiff. We evaluated two different Dragonfly setups to investigate the
overall performance of an unmodified model provided by the authors, and a fine-tuned model biased
with only one target compound descriptors.
Dragonfly is an out-of-the-box model released by the authors with no modifications applied to the
model.
Dragonfly (b) (biased) leverages built-in ability to condition sampling on target compound descrip-
tors. Specifically, bias is applied toward molecular weight, number of rotatable bonds, hydrogen
bond donors and acceptors, topological polar surface area, and logP, thereby steering the generation
toward molecules with physicochemical properties aligned with the target profile.
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Table 2: Comparison of ligand-based models, each with initial number of Ngen = 10,000 molecules

12 models and 15 model setups

REINVENT41 (V, vanilla): unmodified, out-of-the-box model 
REINVENT4 (P, prior): provided prior with mol2mol medium 
Tanimoto similarity threshold of 0.7  
REINVENT4 (TL, transfer-learning): f ine-tuned 
REINVENT4 (V) on 583 known KRAS G12D inhibitors2

1Hannes H Loeffler, Jiazhen He, Alessandro Tibo, Jon Paul Janet, Alexey Voronov, Lewis H Mervin, and Ola Engkvist. Reinvent 4: modern ai–driven generative molecule design. Journal of Cheminformatics, 16(1):20, 2024. 
2Mohammad Ghazi Vakili, Christoph Gorgulla, Jamie Snider, AkshatKumar Nigam, Dmitry Bezrukov, Daniel Varoli, Alex Aliper, Daniil Polykovsky, Krishna M Padmanabha Das, Huel Cox Iii, et al. Quantum-computing-enhanced 
algorithm unveils potential kras inhibitors. Nature Biotechnology, pp. 1–6, 2025. 
3Kenneth Atz, Leandro Cotos, Clemens Isert, Maria Ha ̊kansson, Dorota Focht, Mattis Hilleke, David F Nippa, Michael Iff, Jann Ledergerber, Carl CG Schiebroek, et al. Prospective de novo drug design with deep interactome learning. 
Nature Communications, 15(1):3408, 2024.

Dragonfly3: unmodified, out-of-the-box model 
Dragonfly (b, biased): condition sampling on target 
compound descriptors
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Results are presented in Table 4. Although Dragonfly passes the first stage with only 27.79% of
initial molecules, the number of molecules that pass medicinal chemists evaluation is the highest
among all families, suggesting that Dragonfly is able to sample molecules that are likely to be valid
and useful. DiffSBDD, Dragonfly, DrugFlow, Pocket2Mol and TargetDiff strongly dominate other
models while passing descriptors stage. However, DiffSBDD, DrugFlow, Pocket2Mol, TargetDiff
loses more than a quarter of molecules after structural filters stage, suggesting that those models
struggle with synthesis of non toxic and pan-assay-free molecules. TargetDiff does not pass docking
and binding affinity estimation stage, and DiffSBDD does not pass medicinal chemistry evaluation
stage, while DrugFlow is the second most successful model.

Table 4: Comparison of protein-based models, each with initial number of molecules Ngen = 10,000

Stage /Model DIFFSBDD DRAGONFLY DRAGONFLY (B) DRUGFLOW POCKET2MOL PROTOBIND-DIFF RESGEN TARGETDIFF
Descriptors 3665 2779 1022 5464 2657 1466 1080 3444

Structural Filters 197 1459 218 1392 682 195 255 136
Synthesis Feasibility 24 1207 38 453 137 102 62 4

Docking & Binding Aff. 13 575 15 344 69 66 37 0
Med.Chem. Evaluation 0 227 4 62 12 7 6 0

Pass 0 227 4 62 12 7 6 0

5 DISCUSSION AND CONCLUSION

Applying the same five-stage filtration across unconditional, ligand-based, and protein-based mod-
els reveals that across 210,000 generated molecules only 969 (0.461%) of generated molecules
pass end-to-end screening. Empirically, unconditional models have the highest overall pass rate
of 0.607%, producing molecules that correlate with basic requirements of early drug discovery.
Ligand-based models achieved moderate retention with 0.41% pass rate. Protein-based models are
left with the smallest fraction of passed molecules (0.398%), with Dragonfly achieving the highest
final pass rate of 227 molecules despite low initial retention. Across all families, streepest attri-
tion occurs at synthetic feasibility (⇡ 0.2501 molecules w.r.t. descriptors filtration) and medicinal
chemistry (⇡ 0.1535 molecules w.r.t. synthesis feasibility evaluation stage) evaluation stages. This
confirms prior findings that benchmark metrics, such as validity is weak predictor of downstream
utility. The explicit retrosynthesis gate (AiZynthFinder) is therefore critical to separate benchmark
overfitting from true drug-likeness.

Our results highlight several architecture-dependent trends across molecule generators. Equivariant
diffusion models (E(3)DM, DiffSBDD, TargetDiff) exceed at encoding 3D symmetries and geo-
metric constraints, yet collapse under synthetic accessibility evaluation, suggesting that geometric
fidelity alone is insufficient for practical usage. Graph-based VAEs (JT-VAE, HierGraphVAE) bal-
ance validity and synthesizability better than other unconditional models, confirming the hypothesis
that scaffold-aware decoders reduce chemical complexity. REINVENT4 is highly sensitive to prior
choice: broad priors generalize well through the pipeline, while similarity-based or transfer-learned
priors reduce downstream retention. Genetic optimizers (MolFinder) find high-scoring candidates
without pretraining but enrich high structural alert rates, highlighting the exploration-safety trade-
off. Pharmacophore-based models (GCPG, PGMG) confirm the value of explicit interaction motif
bias, yielding high enrichment, although PGMG shows low overall pass-rate.

Our findings emphasize that standard generative benchmarks are not good proxies for real-world
performance. Optimizing for validity, synthesis, or pocket fidelity independently is insufficient for
actionable chemical space that requires alignment across all objectives simultaneously. That is why
evaluation should integrate: (i) multistage filtering pipeline (descriptors, structural alerts, synthe-
sis feasibility, docking and binding affinity, and medicinal chemistry stages); (ii) synthesis-aware
metrics beyond SA scores; and (iii) stage failures analysis.

While our pipeline integrates synthesis and docking gates, it does not yet capture long-range phar-
macokinetics, ADMET liabilities, or clinical viability. Future work should couple generative models
with multiscale predictions, and uncertainty-aware evaluation of generated molecules.
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sibility stage and no candidates remain after this stage; TGM-DLM leaves with the least candidates,
mostly due to struggle with validity, filtering out most molecules on descriptors stage.

Table 2: Comparison of unconditional models, each with initial number of molecules Ngen = 10,000

Stage /Model E(3)DM HIERGRAPHVAE JT-VAE MOLER MOLGPT TGM-DLM
Descriptors 3520 3579 7586 3193 3474 1216

Structural Filters 75 1176 2765 718 1029 100
Synthesis Feasibility 0 975 1549 557 679 35

Docking & Binding Aff. 0 477 816 323 340 10
Med.Chem. Evaluation 0 53 181 65 64 1

Pass 0 53 181 65 64 1

4.2 LIGAND-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: GCPG, GENTRL, MolFinder, PGMG, and three dif-
ferent setups of REINVENT4: REINVENT4 (V), REINVENT4 (P), REINVENT4 (TL) described
below. We examine multiple REINVENT4 setups because sampling behavior depends strongly on
the learned prior and fine-tuning strategy; comparing variants isolates how prior choice and transfer
learning affect diversity, novelty, synthesizability, and downstream performance.
REINVENT4 (V) (vanilla) uses the out-of-the-box prior released by the authors, and no further
modifications applied to the model.
REINVENT4 (P) (prior) is a similarity-based REINVENT4 prior released by the authors that was
trained under a medium Tanimoto similarity sampling mode.
REINVENT4 (TL) (transfer learning) is our transfer-learned prior, fine-tuned on known
KRAS G12D inhibitors to bias sampling toward the target chemical space. Training and imple-
mentation details are provided in Appendix C.

Results are presented in Table 3. GCPG sustains the highest end-to-end retention, resulting in
110 molecules after medicinal chemists evaluation stage. REINVENT4 (V) yields more success
molecules (93) than REINVENT4 (P) and REINVENT4 (TL) with 17 and 32 molecules respec-
tively, showing that a broader prior favored downstream filtering pipeline, although sampling 10,000
molecules for REINVENT4 (V) required more attempts. PGMG underperforms early at the de-
scriptors stage and retains the fewest candidates, however, the fraction of molecules that passed
docking and binding affinity estimation stage with respect to synthetic feasibility stage is the high-
est (19/22 = 0.864), indicating that pharmacophore-based models tend to generate molecules, that
are indeed likely to capture pocket shape geometry and complementarity, but PGMG struggles with
overall molecule validity.

Table 3: Comparison of ligand-based models, each with initial number of Ngen = 10,000 molecules

Stage /Model GCPG GENTRL MOLFINDER PGMG REINVENT4 (V) REINVENT4 (P) REINVENT4 (TL)
Descriptors 6616 5669 1592 195 4089 936 1204

Structural Filters 4168 1925 366 37 1325 593 413
Synthesis Feasibility 1064 303 265 22 918 222 276

Docking & Binding Aff. 648 238 200 19 518 72 164
Med.Chem. Evaluation 110 24 7 4 93 17 32

Pass 110 24 7 4 93 17 32

4.3 PROTEIN-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: DiffSBDD, Dragonfly, Dragonfly biased (b), DrugFlow,
Pocket2Mol, ResGen, TargetDiff. We evaluated two different Dragonfly setups to investigate the
overall performance of an unmodified model provided by the authors, and a fine-tuned model biased
with only one target compound descriptors.
Dragonfly is an out-of-the-box model released by the authors with no modifications applied to the
model.
Dragonfly (b) (biased) leverages built-in ability to condition sampling on target compound descrip-
tors. Specifically, bias is applied toward molecular weight, number of rotatable bonds, hydrogen
bond donors and acceptors, topological polar surface area, and logP, thereby steering the generation
toward molecules with physicochemical properties aligned with the target profile.
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Results are presented in Table 4. Although Dragonfly passes the first stage with only 27.79% of
initial molecules, the number of molecules that pass medicinal chemists evaluation is the highest
among all families, suggesting that Dragonfly is able to sample molecules that are likely to be valid
and useful. DiffSBDD, Dragonfly, DrugFlow, Pocket2Mol and TargetDiff strongly dominate other
models while passing descriptors stage. However, DiffSBDD, DrugFlow, Pocket2Mol, TargetDiff
loses more than a quarter of molecules after structural filters stage, suggesting that those models
struggle with synthesis of non toxic and pan-assay-free molecules. TargetDiff does not pass docking
and binding affinity estimation stage, and DiffSBDD does not pass medicinal chemistry evaluation
stage, while DrugFlow is the second most successful model.

Table 4: Comparison of protein-based models, each with initial number of molecules Ngen = 10,000

Stage /Model DIFFSBDD DRAGONFLY DRAGONFLY (B) DRUGFLOW POCKET2MOL PROTOBIND-DIFF RESGEN TARGETDIFF
Descriptors 3665 2779 1022 5464 2657 1466 1080 3444

Structural Filters 197 1459 218 1392 682 195 255 136
Synthesis Feasibility 24 1207 38 453 137 102 62 4

Docking & Binding Aff. 13 575 15 344 69 66 37 0
Med.Chem. Evaluation 0 227 4 62 12 7 6 0

Pass 0 227 4 62 12 7 6 0

5 DISCUSSION AND CONCLUSION

Applying the same five-stage filtration across unconditional, ligand-based, and protein-based mod-
els reveals that across 210,000 generated molecules only 969 (0.461%) of generated molecules
pass end-to-end screening. Empirically, unconditional models have the highest overall pass rate
of 0.607%, producing molecules that correlate with basic requirements of early drug discovery.
Ligand-based models achieved moderate retention with 0.41% pass rate. Protein-based models are
left with the smallest fraction of passed molecules (0.398%), with Dragonfly achieving the highest
final pass rate of 227 molecules despite low initial retention. Across all families, streepest attri-
tion occurs at synthetic feasibility (⇡ 0.2501 molecules w.r.t. descriptors filtration) and medicinal
chemistry (⇡ 0.1535 molecules w.r.t. synthesis feasibility evaluation stage) evaluation stages. This
confirms prior findings that benchmark metrics, such as validity is weak predictor of downstream
utility. The explicit retrosynthesis gate (AiZynthFinder) is therefore critical to separate benchmark
overfitting from true drug-likeness.

Our results highlight several architecture-dependent trends across molecule generators. Equivariant
diffusion models (E(3)DM, DiffSBDD, TargetDiff) exceed at encoding 3D symmetries and geo-
metric constraints, yet collapse under synthetic accessibility evaluation, suggesting that geometric
fidelity alone is insufficient for practical usage. Graph-based VAEs (JT-VAE, HierGraphVAE) bal-
ance validity and synthesizability better than other unconditional models, confirming the hypothesis
that scaffold-aware decoders reduce chemical complexity. REINVENT4 is highly sensitive to prior
choice: broad priors generalize well through the pipeline, while similarity-based or transfer-learned
priors reduce downstream retention. Genetic optimizers (MolFinder) find high-scoring candidates
without pretraining but enrich high structural alert rates, highlighting the exploration-safety trade-
off. Pharmacophore-based models (GCPG, PGMG) confirm the value of explicit interaction motif
bias, yielding high enrichment, although PGMG shows low overall pass-rate.

Our findings emphasize that standard generative benchmarks are not good proxies for real-world
performance. Optimizing for validity, synthesis, or pocket fidelity independently is insufficient for
actionable chemical space that requires alignment across all objectives simultaneously. That is why
evaluation should integrate: (i) multistage filtering pipeline (descriptors, structural alerts, synthe-
sis feasibility, docking and binding affinity, and medicinal chemistry stages); (ii) synthesis-aware
metrics beyond SA scores; and (iii) stage failures analysis.

While our pipeline integrates synthesis and docking gates, it does not yet capture long-range phar-
macokinetics, ADMET liabilities, or clinical viability. Future work should couple generative models
with multiscale predictions, and uncertainty-aware evaluation of generated molecules.
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Results are presented in Table 4. Although Dragonfly passes the first stage with only 27.79% of
initial molecules, the number of molecules that pass medicinal chemists evaluation is the highest
among all families, suggesting that Dragonfly is able to sample molecules that are likely to be valid
and useful. DiffSBDD, Dragonfly, DrugFlow, Pocket2Mol and TargetDiff strongly dominate other
models while passing descriptors stage. However, DiffSBDD, DrugFlow, Pocket2Mol, TargetDiff
loses more than a quarter of molecules after structural filters stage, suggesting that those models
struggle with synthesis of non toxic and pan-assay-free molecules. TargetDiff does not pass docking
and binding affinity estimation stage, and DiffSBDD does not pass medicinal chemistry evaluation
stage, while DrugFlow is the second most successful model.

Table 4: Comparison of protein-based models, each with initial number of molecules Ngen = 10,000

Stage /Model DIFFSBDD DRAGONFLY DRAGONFLY (B) DRUGFLOW POCKET2MOL PROTOBIND-DIFF RESGEN TARGETDIFF
Descriptors 3665 2779 1022 5464 2657 1466 1080 3444

Structural Filters 197 1459 218 1392 682 195 255 136
Synthesis Feasibility 24 1207 38 453 137 102 62 4

Docking & Binding Aff. 13 575 15 344 69 66 37 0
Med.Chem. Evaluation 0 227 4 62 12 7 6 0

Pass 0 227 4 62 12 7 6 0

5 DISCUSSION AND CONCLUSION

Applying the same five-stage filtration across unconditional, ligand-based, and protein-based mod-
els reveals that across 210,000 generated molecules only 969 (0.461%) of generated molecules
pass end-to-end screening. Empirically, unconditional models have the highest overall pass rate
of 0.607%, producing molecules that correlate with basic requirements of early drug discovery.
Ligand-based models achieved moderate retention with 0.41% pass rate. Protein-based models are
left with the smallest fraction of passed molecules (0.398%), with Dragonfly achieving the highest
final pass rate of 227 molecules despite low initial retention. Across all families, streepest attri-
tion occurs at synthetic feasibility (⇡ 0.2501 molecules w.r.t. descriptors filtration) and medicinal
chemistry (⇡ 0.1535 molecules w.r.t. synthesis feasibility evaluation stage) evaluation stages. This
confirms prior findings that benchmark metrics, such as validity is weak predictor of downstream
utility. The explicit retrosynthesis gate (AiZynthFinder) is therefore critical to separate benchmark
overfitting from true drug-likeness.

Our results highlight several architecture-dependent trends across molecule generators. Equivariant
diffusion models (E(3)DM, DiffSBDD, TargetDiff) exceed at encoding 3D symmetries and geo-
metric constraints, yet collapse under synthetic accessibility evaluation, suggesting that geometric
fidelity alone is insufficient for practical usage. Graph-based VAEs (JT-VAE, HierGraphVAE) bal-
ance validity and synthesizability better than other unconditional models, confirming the hypothesis
that scaffold-aware decoders reduce chemical complexity. REINVENT4 is highly sensitive to prior
choice: broad priors generalize well through the pipeline, while similarity-based or transfer-learned
priors reduce downstream retention. Genetic optimizers (MolFinder) find high-scoring candidates
without pretraining but enrich high structural alert rates, highlighting the exploration-safety trade-
off. Pharmacophore-based models (GCPG, PGMG) confirm the value of explicit interaction motif
bias, yielding high enrichment, although PGMG shows low overall pass-rate.

Our findings emphasize that standard generative benchmarks are not good proxies for real-world
performance. Optimizing for validity, synthesis, or pocket fidelity independently is insufficient for
actionable chemical space that requires alignment across all objectives simultaneously. That is why
evaluation should integrate: (i) multistage filtering pipeline (descriptors, structural alerts, synthe-
sis feasibility, docking and binding affinity, and medicinal chemistry stages); (ii) synthesis-aware
metrics beyond SA scores; and (iii) stage failures analysis.

While our pipeline integrates synthesis and docking gates, it does not yet capture long-range phar-
macokinetics, ADMET liabilities, or clinical viability. Future work should couple generative models
with multiscale predictions, and uncertainty-aware evaluation of generated molecules.
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sibility stage and no candidates remain after this stage; TGM-DLM leaves with the least candidates,
mostly due to struggle with validity, filtering out most molecules on descriptors stage.

Table 2: Comparison of unconditional models, each with initial number of molecules Ngen = 10,000

Stage /Model E(3)DM HIERGRAPHVAE JT-VAE MOLER MOLGPT TGM-DLM
Descriptors 3520 3579 7586 3193 3474 1216

Structural Filters 75 1176 2765 718 1029 100
Synthesis Feasibility 0 975 1549 557 679 35

Docking & Binding Aff. 0 477 816 323 340 10
Med.Chem. Evaluation 0 53 181 65 64 1

Pass 0 53 181 65 64 1

4.2 LIGAND-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: GCPG, GENTRL, MolFinder, PGMG, and three dif-
ferent setups of REINVENT4: REINVENT4 (V), REINVENT4 (P), REINVENT4 (TL) described
below. We examine multiple REINVENT4 setups because sampling behavior depends strongly on
the learned prior and fine-tuning strategy; comparing variants isolates how prior choice and transfer
learning affect diversity, novelty, synthesizability, and downstream performance.
REINVENT4 (V) (vanilla) uses the out-of-the-box prior released by the authors, and no further
modifications applied to the model.
REINVENT4 (P) (prior) is a similarity-based REINVENT4 prior released by the authors that was
trained under a medium Tanimoto similarity sampling mode.
REINVENT4 (TL) (transfer learning) is our transfer-learned prior, fine-tuned on known
KRAS G12D inhibitors to bias sampling toward the target chemical space. Training and imple-
mentation details are provided in Appendix C.

Results are presented in Table 3. GCPG sustains the highest end-to-end retention, resulting in
110 molecules after medicinal chemists evaluation stage. REINVENT4 (V) yields more success
molecules (93) than REINVENT4 (P) and REINVENT4 (TL) with 17 and 32 molecules respec-
tively, showing that a broader prior favored downstream filtering pipeline, although sampling 10,000
molecules for REINVENT4 (V) required more attempts. PGMG underperforms early at the de-
scriptors stage and retains the fewest candidates, however, the fraction of molecules that passed
docking and binding affinity estimation stage with respect to synthetic feasibility stage is the high-
est (19/22 = 0.864), indicating that pharmacophore-based models tend to generate molecules, that
are indeed likely to capture pocket shape geometry and complementarity, but PGMG struggles with
overall molecule validity.

Table 3: Comparison of ligand-based models, each with initial number of Ngen = 10,000 molecules

Stage /Model GCPG GENTRL MOLFINDER PGMG REINVENT4 (V) REINVENT4 (P) REINVENT4 (TL)
Descriptors 6616 5669 1592 195 4089 936 1204

Structural Filters 4168 1925 366 37 1325 593 413
Synthesis Feasibility 1064 303 265 22 918 222 276

Docking & Binding Aff. 648 238 200 19 518 72 164
Med.Chem. Evaluation 110 24 7 4 93 17 32

Pass 110 24 7 4 93 17 32

4.3 PROTEIN-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: DiffSBDD, Dragonfly, Dragonfly biased (b), DrugFlow,
Pocket2Mol, ResGen, TargetDiff. We evaluated two different Dragonfly setups to investigate the
overall performance of an unmodified model provided by the authors, and a fine-tuned model biased
with only one target compound descriptors.
Dragonfly is an out-of-the-box model released by the authors with no modifications applied to the
model.
Dragonfly (b) (biased) leverages built-in ability to condition sampling on target compound descrip-
tors. Specifically, bias is applied toward molecular weight, number of rotatable bonds, hydrogen
bond donors and acceptors, topological polar surface area, and logP, thereby steering the generation
toward molecules with physicochemical properties aligned with the target profile.
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sibility stage and no candidates remain after this stage; TGM-DLM leaves with the least candidates,
mostly due to struggle with validity, filtering out most molecules on descriptors stage.

Table 2: Comparison of unconditional models, each with initial number of molecules Ngen = 10,000

Stage /Model E(3)DM HIERGRAPHVAE JT-VAE MOLER MOLGPT TGM-DLM
Descriptors 3520 3579 7586 3193 3474 1216

Structural Filters 75 1176 2765 718 1029 100
Synthesis Feasibility 0 975 1549 557 679 35

Docking & Binding Aff. 0 477 816 323 340 10
Med.Chem. Evaluation 0 53 181 65 64 1

Pass 0 53 181 65 64 1

4.2 LIGAND-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: GCPG, GENTRL, MolFinder, PGMG, and three dif-
ferent setups of REINVENT4: REINVENT4 (V), REINVENT4 (P), REINVENT4 (TL) described
below. We examine multiple REINVENT4 setups because sampling behavior depends strongly on
the learned prior and fine-tuning strategy; comparing variants isolates how prior choice and transfer
learning affect diversity, novelty, synthesizability, and downstream performance.
REINVENT4 (V) (vanilla) uses the out-of-the-box prior released by the authors, and no further
modifications applied to the model.
REINVENT4 (P) (prior) is a similarity-based REINVENT4 prior released by the authors that was
trained under a medium Tanimoto similarity sampling mode.
REINVENT4 (TL) (transfer learning) is our transfer-learned prior, fine-tuned on known
KRAS G12D inhibitors to bias sampling toward the target chemical space. Training and imple-
mentation details are provided in Appendix C.

Results are presented in Table 3. GCPG sustains the highest end-to-end retention, resulting in
110 molecules after medicinal chemists evaluation stage. REINVENT4 (V) yields more success
molecules (93) than REINVENT4 (P) and REINVENT4 (TL) with 17 and 32 molecules respec-
tively, showing that a broader prior favored downstream filtering pipeline, although sampling 10,000
molecules for REINVENT4 (V) required more attempts. PGMG underperforms early at the de-
scriptors stage and retains the fewest candidates, however, the fraction of molecules that passed
docking and binding affinity estimation stage with respect to synthetic feasibility stage is the high-
est (19/22 = 0.864), indicating that pharmacophore-based models tend to generate molecules, that
are indeed likely to capture pocket shape geometry and complementarity, but PGMG struggles with
overall molecule validity.

Table 3: Comparison of ligand-based models, each with initial number of Ngen = 10,000 molecules

Stage /Model GCPG GENTRL MOLFINDER PGMG REINVENT4 (V) REINVENT4 (P) REINVENT4 (TL)
Descriptors 6616 5669 1592 195 4089 936 1204

Structural Filters 4168 1925 366 37 1325 593 413
Synthesis Feasibility 1064 303 265 22 918 222 276

Docking & Binding Aff. 648 238 200 19 518 72 164
Med.Chem. Evaluation 110 24 7 4 93 17 32

Pass 110 24 7 4 93 17 32

4.3 PROTEIN-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: DiffSBDD, Dragonfly, Dragonfly biased (b), DrugFlow,
Pocket2Mol, ResGen, TargetDiff. We evaluated two different Dragonfly setups to investigate the
overall performance of an unmodified model provided by the authors, and a fine-tuned model biased
with only one target compound descriptors.
Dragonfly is an out-of-the-box model released by the authors with no modifications applied to the
model.
Dragonfly (b) (biased) leverages built-in ability to condition sampling on target compound descrip-
tors. Specifically, bias is applied toward molecular weight, number of rotatable bonds, hydrogen
bond donors and acceptors, topological polar surface area, and logP, thereby steering the generation
toward molecules with physicochemical properties aligned with the target profile.
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Results are presented in Table 4. Although Dragonfly passes the first stage with only 27.79% of
initial molecules, the number of molecules that pass medicinal chemists evaluation is the highest
among all families, suggesting that Dragonfly is able to sample molecules that are likely to be valid
and useful. DiffSBDD, Dragonfly, DrugFlow, Pocket2Mol and TargetDiff strongly dominate other
models while passing descriptors stage. However, DiffSBDD, DrugFlow, Pocket2Mol, TargetDiff
loses more than a quarter of molecules after structural filters stage, suggesting that those models
struggle with synthesis of non toxic and pan-assay-free molecules. TargetDiff does not pass docking
and binding affinity estimation stage, and DiffSBDD does not pass medicinal chemistry evaluation
stage, while DrugFlow is the second most successful model.

Table 4: Comparison of protein-based models, each with initial number of molecules Ngen = 10,000

Stage /Model DIFFSBDD DRAGONFLY DRAGONFLY (B) DRUGFLOW POCKET2MOL PROTOBIND-DIFF RESGEN TARGETDIFF
Descriptors 3665 2779 1022 5464 2657 1466 1080 3444

Structural Filters 197 1459 218 1392 682 195 255 136
Synthesis Feasibility 24 1207 38 453 137 102 62 4

Docking & Binding Aff. 13 575 15 344 69 66 37 0
Med.Chem. Evaluation 0 227 4 62 12 7 6 0

Pass 0 227 4 62 12 7 6 0

5 DISCUSSION AND CONCLUSION

Applying the same five-stage filtration across unconditional, ligand-based, and protein-based mod-
els reveals that across 210,000 generated molecules only 969 (0.461%) of generated molecules
pass end-to-end screening. Empirically, unconditional models have the highest overall pass rate
of 0.607%, producing molecules that correlate with basic requirements of early drug discovery.
Ligand-based models achieved moderate retention with 0.41% pass rate. Protein-based models are
left with the smallest fraction of passed molecules (0.398%), with Dragonfly achieving the highest
final pass rate of 227 molecules despite low initial retention. Across all families, streepest attri-
tion occurs at synthetic feasibility (⇡ 0.2501 molecules w.r.t. descriptors filtration) and medicinal
chemistry (⇡ 0.1535 molecules w.r.t. synthesis feasibility evaluation stage) evaluation stages. This
confirms prior findings that benchmark metrics, such as validity is weak predictor of downstream
utility. The explicit retrosynthesis gate (AiZynthFinder) is therefore critical to separate benchmark
overfitting from true drug-likeness.

Our results highlight several architecture-dependent trends across molecule generators. Equivariant
diffusion models (E(3)DM, DiffSBDD, TargetDiff) exceed at encoding 3D symmetries and geo-
metric constraints, yet collapse under synthetic accessibility evaluation, suggesting that geometric
fidelity alone is insufficient for practical usage. Graph-based VAEs (JT-VAE, HierGraphVAE) bal-
ance validity and synthesizability better than other unconditional models, confirming the hypothesis
that scaffold-aware decoders reduce chemical complexity. REINVENT4 is highly sensitive to prior
choice: broad priors generalize well through the pipeline, while similarity-based or transfer-learned
priors reduce downstream retention. Genetic optimizers (MolFinder) find high-scoring candidates
without pretraining but enrich high structural alert rates, highlighting the exploration-safety trade-
off. Pharmacophore-based models (GCPG, PGMG) confirm the value of explicit interaction motif
bias, yielding high enrichment, although PGMG shows low overall pass-rate.

Our findings emphasize that standard generative benchmarks are not good proxies for real-world
performance. Optimizing for validity, synthesis, or pocket fidelity independently is insufficient for
actionable chemical space that requires alignment across all objectives simultaneously. That is why
evaluation should integrate: (i) multistage filtering pipeline (descriptors, structural alerts, synthe-
sis feasibility, docking and binding affinity, and medicinal chemistry stages); (ii) synthesis-aware
metrics beyond SA scores; and (iii) stage failures analysis.

While our pipeline integrates synthesis and docking gates, it does not yet capture long-range phar-
macokinetics, ADMET liabilities, or clinical viability. Future work should couple generative models
with multiscale predictions, and uncertainty-aware evaluation of generated molecules.
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Results are presented in Table 4. Although Dragonfly passes the first stage with only 27.79% of
initial molecules, the number of molecules that pass medicinal chemists evaluation is the highest
among all families, suggesting that Dragonfly is able to sample molecules that are likely to be valid
and useful. DiffSBDD, Dragonfly, DrugFlow, Pocket2Mol and TargetDiff strongly dominate other
models while passing descriptors stage. However, DiffSBDD, DrugFlow, Pocket2Mol, TargetDiff
loses more than a quarter of molecules after structural filters stage, suggesting that those models
struggle with synthesis of non toxic and pan-assay-free molecules. TargetDiff does not pass docking
and binding affinity estimation stage, and DiffSBDD does not pass medicinal chemistry evaluation
stage, while DrugFlow is the second most successful model.

Table 4: Comparison of protein-based models, each with initial number of molecules Ngen = 10,000

Stage /Model DIFFSBDD DRAGONFLY DRAGONFLY (B) DRUGFLOW POCKET2MOL PROTOBIND-DIFF RESGEN TARGETDIFF
Descriptors 3665 2779 1022 5464 2657 1466 1080 3444

Structural Filters 197 1459 218 1392 682 195 255 136
Synthesis Feasibility 24 1207 38 453 137 102 62 4

Docking & Binding Aff. 13 575 15 344 69 66 37 0
Med.Chem. Evaluation 0 227 4 62 12 7 6 0

Pass 0 227 4 62 12 7 6 0

5 DISCUSSION AND CONCLUSION

Applying the same five-stage filtration across unconditional, ligand-based, and protein-based mod-
els reveals that across 210,000 generated molecules only 969 (0.461%) of generated molecules
pass end-to-end screening. Empirically, unconditional models have the highest overall pass rate
of 0.607%, producing molecules that correlate with basic requirements of early drug discovery.
Ligand-based models achieved moderate retention with 0.41% pass rate. Protein-based models are
left with the smallest fraction of passed molecules (0.398%), with Dragonfly achieving the highest
final pass rate of 227 molecules despite low initial retention. Across all families, streepest attri-
tion occurs at synthetic feasibility (⇡ 0.2501 molecules w.r.t. descriptors filtration) and medicinal
chemistry (⇡ 0.1535 molecules w.r.t. synthesis feasibility evaluation stage) evaluation stages. This
confirms prior findings that benchmark metrics, such as validity is weak predictor of downstream
utility. The explicit retrosynthesis gate (AiZynthFinder) is therefore critical to separate benchmark
overfitting from true drug-likeness.

Our results highlight several architecture-dependent trends across molecule generators. Equivariant
diffusion models (E(3)DM, DiffSBDD, TargetDiff) exceed at encoding 3D symmetries and geo-
metric constraints, yet collapse under synthetic accessibility evaluation, suggesting that geometric
fidelity alone is insufficient for practical usage. Graph-based VAEs (JT-VAE, HierGraphVAE) bal-
ance validity and synthesizability better than other unconditional models, confirming the hypothesis
that scaffold-aware decoders reduce chemical complexity. REINVENT4 is highly sensitive to prior
choice: broad priors generalize well through the pipeline, while similarity-based or transfer-learned
priors reduce downstream retention. Genetic optimizers (MolFinder) find high-scoring candidates
without pretraining but enrich high structural alert rates, highlighting the exploration-safety trade-
off. Pharmacophore-based models (GCPG, PGMG) confirm the value of explicit interaction motif
bias, yielding high enrichment, although PGMG shows low overall pass-rate.

Our findings emphasize that standard generative benchmarks are not good proxies for real-world
performance. Optimizing for validity, synthesis, or pocket fidelity independently is insufficient for
actionable chemical space that requires alignment across all objectives simultaneously. That is why
evaluation should integrate: (i) multistage filtering pipeline (descriptors, structural alerts, synthe-
sis feasibility, docking and binding affinity, and medicinal chemistry stages); (ii) synthesis-aware
metrics beyond SA scores; and (iii) stage failures analysis.

While our pipeline integrates synthesis and docking gates, it does not yet capture long-range phar-
macokinetics, ADMET liabilities, or clinical viability. Future work should couple generative models
with multiscale predictions, and uncertainty-aware evaluation of generated molecules.
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sibility stage and no candidates remain after this stage; TGM-DLM leaves with the least candidates,
mostly due to struggle with validity, filtering out most molecules on descriptors stage.

Table 2: Comparison of unconditional models, each with initial number of molecules Ngen = 10,000

Stage /Model E(3)DM HIERGRAPHVAE JT-VAE MOLER MOLGPT TGM-DLM
Descriptors 3520 3579 7586 3193 3474 1216

Structural Filters 75 1176 2765 718 1029 100
Synthesis Feasibility 0 975 1549 557 679 35

Docking & Binding Aff. 0 477 816 323 340 10
Med.Chem. Evaluation 0 53 181 65 64 1

Pass 0 53 181 65 64 1

4.2 LIGAND-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: GCPG, GENTRL, MolFinder, PGMG, and three dif-
ferent setups of REINVENT4: REINVENT4 (V), REINVENT4 (P), REINVENT4 (TL) described
below. We examine multiple REINVENT4 setups because sampling behavior depends strongly on
the learned prior and fine-tuning strategy; comparing variants isolates how prior choice and transfer
learning affect diversity, novelty, synthesizability, and downstream performance.
REINVENT4 (V) (vanilla) uses the out-of-the-box prior released by the authors, and no further
modifications applied to the model.
REINVENT4 (P) (prior) is a similarity-based REINVENT4 prior released by the authors that was
trained under a medium Tanimoto similarity sampling mode.
REINVENT4 (TL) (transfer learning) is our transfer-learned prior, fine-tuned on known
KRAS G12D inhibitors to bias sampling toward the target chemical space. Training and imple-
mentation details are provided in Appendix C.

Results are presented in Table 3. GCPG sustains the highest end-to-end retention, resulting in
110 molecules after medicinal chemists evaluation stage. REINVENT4 (V) yields more success
molecules (93) than REINVENT4 (P) and REINVENT4 (TL) with 17 and 32 molecules respec-
tively, showing that a broader prior favored downstream filtering pipeline, although sampling 10,000
molecules for REINVENT4 (V) required more attempts. PGMG underperforms early at the de-
scriptors stage and retains the fewest candidates, however, the fraction of molecules that passed
docking and binding affinity estimation stage with respect to synthetic feasibility stage is the high-
est (19/22 = 0.864), indicating that pharmacophore-based models tend to generate molecules, that
are indeed likely to capture pocket shape geometry and complementarity, but PGMG struggles with
overall molecule validity.

Table 3: Comparison of ligand-based models, each with initial number of Ngen = 10,000 molecules

Stage /Model GCPG GENTRL MOLFINDER PGMG REINVENT4 (V) REINVENT4 (P) REINVENT4 (TL)
Descriptors 6616 5669 1592 195 4089 936 1204

Structural Filters 4168 1925 366 37 1325 593 413
Synthesis Feasibility 1064 303 265 22 918 222 276

Docking & Binding Aff. 648 238 200 19 518 72 164
Med.Chem. Evaluation 110 24 7 4 93 17 32

Pass 110 24 7 4 93 17 32

4.3 PROTEIN-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: DiffSBDD, Dragonfly, Dragonfly biased (b), DrugFlow,
Pocket2Mol, ResGen, TargetDiff. We evaluated two different Dragonfly setups to investigate the
overall performance of an unmodified model provided by the authors, and a fine-tuned model biased
with only one target compound descriptors.
Dragonfly is an out-of-the-box model released by the authors with no modifications applied to the
model.
Dragonfly (b) (biased) leverages built-in ability to condition sampling on target compound descrip-
tors. Specifically, bias is applied toward molecular weight, number of rotatable bonds, hydrogen
bond donors and acceptors, topological polar surface area, and logP, thereby steering the generation
toward molecules with physicochemical properties aligned with the target profile.
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sibility stage and no candidates remain after this stage; TGM-DLM leaves with the least candidates,
mostly due to struggle with validity, filtering out most molecules on descriptors stage.

Table 2: Comparison of unconditional models, each with initial number of molecules Ngen = 10,000

Stage /Model E(3)DM HIERGRAPHVAE JT-VAE MOLER MOLGPT TGM-DLM
Descriptors 3520 3579 7586 3193 3474 1216

Structural Filters 75 1176 2765 718 1029 100
Synthesis Feasibility 0 975 1549 557 679 35

Docking & Binding Aff. 0 477 816 323 340 10
Med.Chem. Evaluation 0 53 181 65 64 1

Pass 0 53 181 65 64 1

4.2 LIGAND-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: GCPG, GENTRL, MolFinder, PGMG, and three dif-
ferent setups of REINVENT4: REINVENT4 (V), REINVENT4 (P), REINVENT4 (TL) described
below. We examine multiple REINVENT4 setups because sampling behavior depends strongly on
the learned prior and fine-tuning strategy; comparing variants isolates how prior choice and transfer
learning affect diversity, novelty, synthesizability, and downstream performance.
REINVENT4 (V) (vanilla) uses the out-of-the-box prior released by the authors, and no further
modifications applied to the model.
REINVENT4 (P) (prior) is a similarity-based REINVENT4 prior released by the authors that was
trained under a medium Tanimoto similarity sampling mode.
REINVENT4 (TL) (transfer learning) is our transfer-learned prior, fine-tuned on known
KRAS G12D inhibitors to bias sampling toward the target chemical space. Training and imple-
mentation details are provided in Appendix C.

Results are presented in Table 3. GCPG sustains the highest end-to-end retention, resulting in
110 molecules after medicinal chemists evaluation stage. REINVENT4 (V) yields more success
molecules (93) than REINVENT4 (P) and REINVENT4 (TL) with 17 and 32 molecules respec-
tively, showing that a broader prior favored downstream filtering pipeline, although sampling 10,000
molecules for REINVENT4 (V) required more attempts. PGMG underperforms early at the de-
scriptors stage and retains the fewest candidates, however, the fraction of molecules that passed
docking and binding affinity estimation stage with respect to synthetic feasibility stage is the high-
est (19/22 = 0.864), indicating that pharmacophore-based models tend to generate molecules, that
are indeed likely to capture pocket shape geometry and complementarity, but PGMG struggles with
overall molecule validity.

Table 3: Comparison of ligand-based models, each with initial number of Ngen = 10,000 molecules

Stage /Model GCPG GENTRL MOLFINDER PGMG REINVENT4 (V) REINVENT4 (P) REINVENT4 (TL)
Descriptors 6616 5669 1592 195 4089 936 1204

Structural Filters 4168 1925 366 37 1325 593 413
Synthesis Feasibility 1064 303 265 22 918 222 276

Docking & Binding Aff. 648 238 200 19 518 72 164
Med.Chem. Evaluation 110 24 7 4 93 17 32

Pass 110 24 7 4 93 17 32

4.3 PROTEIN-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: DiffSBDD, Dragonfly, Dragonfly biased (b), DrugFlow,
Pocket2Mol, ResGen, TargetDiff. We evaluated two different Dragonfly setups to investigate the
overall performance of an unmodified model provided by the authors, and a fine-tuned model biased
with only one target compound descriptors.
Dragonfly is an out-of-the-box model released by the authors with no modifications applied to the
model.
Dragonfly (b) (biased) leverages built-in ability to condition sampling on target compound descrip-
tors. Specifically, bias is applied toward molecular weight, number of rotatable bonds, hydrogen
bond donors and acceptors, topological polar surface area, and logP, thereby steering the generation
toward molecules with physicochemical properties aligned with the target profile.
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 3,070  / 70,000 = 4.3857 
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Results are presented in Table 4. Although Dragonfly passes the first stage with only 27.79% of
initial molecules, the number of molecules that pass medicinal chemists evaluation is the highest
among all families, suggesting that Dragonfly is able to sample molecules that are likely to be valid
and useful. DiffSBDD, Dragonfly, DrugFlow, Pocket2Mol and TargetDiff strongly dominate other
models while passing descriptors stage. However, DiffSBDD, DrugFlow, Pocket2Mol, TargetDiff
loses more than a quarter of molecules after structural filters stage, suggesting that those models
struggle with synthesis of non toxic and pan-assay-free molecules. TargetDiff does not pass docking
and binding affinity estimation stage, and DiffSBDD does not pass medicinal chemistry evaluation
stage, while DrugFlow is the second most successful model.

Table 4: Comparison of protein-based models, each with initial number of molecules Ngen = 10,000

Stage /Model DIFFSBDD DRAGONFLY DRAGONFLY (B) DRUGFLOW POCKET2MOL PROTOBIND-DIFF RESGEN TARGETDIFF
Descriptors 3665 2779 1022 5464 2657 1466 1080 3444

Structural Filters 197 1459 218 1392 682 195 255 136
Synthesis Feasibility 24 1207 38 453 137 102 62 4

Docking & Binding Aff. 13 575 15 344 69 66 37 0
Med.Chem. Evaluation 0 227 4 62 12 7 6 0

Pass 0 227 4 62 12 7 6 0

5 DISCUSSION AND CONCLUSION

Applying the same five-stage filtration across unconditional, ligand-based, and protein-based mod-
els reveals that across 210,000 generated molecules only 969 (0.461%) of generated molecules
pass end-to-end screening. Empirically, unconditional models have the highest overall pass rate
of 0.607%, producing molecules that correlate with basic requirements of early drug discovery.
Ligand-based models achieved moderate retention with 0.41% pass rate. Protein-based models are
left with the smallest fraction of passed molecules (0.398%), with Dragonfly achieving the highest
final pass rate of 227 molecules despite low initial retention. Across all families, streepest attri-
tion occurs at synthetic feasibility (⇡ 0.2501 molecules w.r.t. descriptors filtration) and medicinal
chemistry (⇡ 0.1535 molecules w.r.t. synthesis feasibility evaluation stage) evaluation stages. This
confirms prior findings that benchmark metrics, such as validity is weak predictor of downstream
utility. The explicit retrosynthesis gate (AiZynthFinder) is therefore critical to separate benchmark
overfitting from true drug-likeness.

Our results highlight several architecture-dependent trends across molecule generators. Equivariant
diffusion models (E(3)DM, DiffSBDD, TargetDiff) exceed at encoding 3D symmetries and geo-
metric constraints, yet collapse under synthetic accessibility evaluation, suggesting that geometric
fidelity alone is insufficient for practical usage. Graph-based VAEs (JT-VAE, HierGraphVAE) bal-
ance validity and synthesizability better than other unconditional models, confirming the hypothesis
that scaffold-aware decoders reduce chemical complexity. REINVENT4 is highly sensitive to prior
choice: broad priors generalize well through the pipeline, while similarity-based or transfer-learned
priors reduce downstream retention. Genetic optimizers (MolFinder) find high-scoring candidates
without pretraining but enrich high structural alert rates, highlighting the exploration-safety trade-
off. Pharmacophore-based models (GCPG, PGMG) confirm the value of explicit interaction motif
bias, yielding high enrichment, although PGMG shows low overall pass-rate.

Our findings emphasize that standard generative benchmarks are not good proxies for real-world
performance. Optimizing for validity, synthesis, or pocket fidelity independently is insufficient for
actionable chemical space that requires alignment across all objectives simultaneously. That is why
evaluation should integrate: (i) multistage filtering pipeline (descriptors, structural alerts, synthe-
sis feasibility, docking and binding affinity, and medicinal chemistry stages); (ii) synthesis-aware
metrics beyond SA scores; and (iii) stage failures analysis.

While our pipeline integrates synthesis and docking gates, it does not yet capture long-range phar-
macokinetics, ADMET liabilities, or clinical viability. Future work should couple generative models
with multiscale predictions, and uncertainty-aware evaluation of generated molecules.
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Table 3: Comparison of protein-based models, each with initial number of Ngen = 10,000 molecules 
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sibility stage and no candidates remain after this stage; TGM-DLM leaves with the least candidates,
mostly due to struggle with validity, filtering out most molecules on descriptors stage.

Table 2: Comparison of unconditional models, each with initial number of molecules Ngen = 10,000

Stage /Model E(3)DM HIERGRAPHVAE JT-VAE MOLER MOLGPT TGM-DLM
Descriptors 3520 3579 7586 3193 3474 1216

Structural Filters 75 1176 2765 718 1029 100
Synthesis Feasibility 0 975 1549 557 679 35

Docking & Binding Aff. 0 477 816 323 340 10
Med.Chem. Evaluation 0 53 181 65 64 1

Pass 0 53 181 65 64 1

4.2 LIGAND-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: GCPG, GENTRL, MolFinder, PGMG, and three dif-
ferent setups of REINVENT4: REINVENT4 (V), REINVENT4 (P), REINVENT4 (TL) described
below. We examine multiple REINVENT4 setups because sampling behavior depends strongly on
the learned prior and fine-tuning strategy; comparing variants isolates how prior choice and transfer
learning affect diversity, novelty, synthesizability, and downstream performance.
REINVENT4 (V) (vanilla) uses the out-of-the-box prior released by the authors, and no further
modifications applied to the model.
REINVENT4 (P) (prior) is a similarity-based REINVENT4 prior released by the authors that was
trained under a medium Tanimoto similarity sampling mode.
REINVENT4 (TL) (transfer learning) is our transfer-learned prior, fine-tuned on known
KRAS G12D inhibitors to bias sampling toward the target chemical space. Training and imple-
mentation details are provided in Appendix C.

Results are presented in Table 3. GCPG sustains the highest end-to-end retention, resulting in
110 molecules after medicinal chemists evaluation stage. REINVENT4 (V) yields more success
molecules (93) than REINVENT4 (P) and REINVENT4 (TL) with 17 and 32 molecules respec-
tively, showing that a broader prior favored downstream filtering pipeline, although sampling 10,000
molecules for REINVENT4 (V) required more attempts. PGMG underperforms early at the de-
scriptors stage and retains the fewest candidates, however, the fraction of molecules that passed
docking and binding affinity estimation stage with respect to synthetic feasibility stage is the high-
est (19/22 = 0.864), indicating that pharmacophore-based models tend to generate molecules, that
are indeed likely to capture pocket shape geometry and complementarity, but PGMG struggles with
overall molecule validity.

Table 3: Comparison of ligand-based models, each with initial number of Ngen = 10,000 molecules

Stage /Model GCPG GENTRL MOLFINDER PGMG REINVENT4 (V) REINVENT4 (P) REINVENT4 (TL)
Descriptors 6616 5669 1592 195 4089 936 1204

Structural Filters 4168 1925 366 37 1325 593 413
Synthesis Feasibility 1064 303 265 22 918 222 276

Docking & Binding Aff. 648 238 200 19 518 72 164
Med.Chem. Evaluation 110 24 7 4 93 17 32

Pass 110 24 7 4 93 17 32

4.3 PROTEIN-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: DiffSBDD, Dragonfly, Dragonfly biased (b), DrugFlow,
Pocket2Mol, ResGen, TargetDiff. We evaluated two different Dragonfly setups to investigate the
overall performance of an unmodified model provided by the authors, and a fine-tuned model biased
with only one target compound descriptors.
Dragonfly is an out-of-the-box model released by the authors with no modifications applied to the
model.
Dragonfly (b) (biased) leverages built-in ability to condition sampling on target compound descrip-
tors. Specifically, bias is applied toward molecular weight, number of rotatable bonds, hydrogen
bond donors and acceptors, topological polar surface area, and logP, thereby steering the generation
toward molecules with physicochemical properties aligned with the target profile.
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(E(3)DM, DiffSBDD, TargetDiff). Graph-based VAEs with scaffold-aware decoders have shown
to yield high validity, but may sample synthetically complex chemotypes that are hard to synthesize
without additional constraints (JT-VAE, HierGraphVAE, MoLeR). Autoregressive SMILES models
are highly sensitive to the learned prior, which substantially alter novelty, similarity to training set,
and downstream filtering rates (REINVENT4). Genetic optimizers can rapidly find high scoring
and novel molecules without pretraining but may increase structural-alert incidence and reduce syn-
thetic success (MolFinder). Flow matching approaches have reported stable training and efficient
sampling that preserves training distribution fidelity (DrugFlow). Pharmacophore-guided methods
explicitly bias generation toward interaction motifs and therefore are expected to increase dock-
ing enrichment (GCPG, PGMG). Finally, prior work has repeatedly shown that high performance
on common generative benchmarks does not guarantee synthesizability in practice, motivating our
explicit retrosynthesis and AiZynthFinder gate.

Overall pass rate is low for all families: 364 molecules (0.607% of 60,000) from unconditional
generators, 287 molecules (0.41% of 70,000) from ligand-based generators, and 318 molecules
(0.398% of 90,000) from protein-based generators. Unconditional models are the most successful,
with 0.607% from initial number of molecules passing all stages, showing that such models are
able to capture general molecular constraints much better than conditioned models. This may be
due to overfitting to features that do not translate into tractable, candidates acceptable for medicinal
chemistry.

Figure 2a shows the top three molecules from each model family. Consensus scores were calculated
as the arithmetic mean of the inverted and min-max normalized values of smina and GNINA docking
scores, and the Boltz-2 binding affinity predictions. Figure 2b shows some synthesis path calculated
via AiZynthFinder tool for the top molecules. Rest paths are available in the Appendix B.3.

(a) Top generated molecules among three families. Top: unconditional
generators (015 - MolGPT, 012 - JT-VAE), middle: protein-based gener-
ators (008 - DrugFlow), bottom: ligand-based generators (016 - GCPG).

015-07075

008-03063

016-07684

(b) Synthesis paths for some of
the top molecules. Top: Mol-
GPT 015-07075 molecule; middle:
DrugFlow 008-03063 molecule; bot-
tom: GCPG 016-07684 molecule.

Figure 2: The top nine generated molecules with their synthesis paths.

4.1 UNCONDITIONAL MOLECULE GENERATORS

We evaluate E(3)DM, HierGraphVAE, JT-VAE, MoLeR, MolGPT, and TGM-DLM. These models
do not condition on target ligands or pocket structure. Results are presented in Table 2. VAE models
(especially JT-VAE) retain markedly more candidates through structural filters and synthetic acces-
sibility estimation stages than E(3)DM or MolGPT models, showing that these models are able to
sample molecules that are valid and not chemically complex; E(3)DM collapses at synthetic acces-

6

GCPG GCPGGCPGGCPG

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(E(3)DM, DiffSBDD, TargetDiff). Graph-based VAEs with scaffold-aware decoders have shown
to yield high validity, but may sample synthetically complex chemotypes that are hard to synthesize
without additional constraints (JT-VAE, HierGraphVAE, MoLeR). Autoregressive SMILES models
are highly sensitive to the learned prior, which substantially alter novelty, similarity to training set,
and downstream filtering rates (REINVENT4). Genetic optimizers can rapidly find high scoring
and novel molecules without pretraining but may increase structural-alert incidence and reduce syn-
thetic success (MolFinder). Flow matching approaches have reported stable training and efficient
sampling that preserves training distribution fidelity (DrugFlow). Pharmacophore-guided methods
explicitly bias generation toward interaction motifs and therefore are expected to increase dock-
ing enrichment (GCPG, PGMG). Finally, prior work has repeatedly shown that high performance
on common generative benchmarks does not guarantee synthesizability in practice, motivating our
explicit retrosynthesis and AiZynthFinder gate.

Overall pass rate is low for all families: 364 molecules (0.607% of 60,000) from unconditional
generators, 287 molecules (0.41% of 70,000) from ligand-based generators, and 318 molecules
(0.398% of 90,000) from protein-based generators. Unconditional models are the most successful,
with 0.607% from initial number of molecules passing all stages, showing that such models are
able to capture general molecular constraints much better than conditioned models. This may be
due to overfitting to features that do not translate into tractable, candidates acceptable for medicinal
chemistry.

Figure 2a shows the top three molecules from each model family. Consensus scores were calculated
as the arithmetic mean of the inverted and min-max normalized values of smina and GNINA docking
scores, and the Boltz-2 binding affinity predictions. Figure 2b shows some synthesis path calculated
via AiZynthFinder tool for the top molecules. Rest paths are available in the Appendix B.3.

(a) Top generated molecules among three families. Top: unconditional
generators (015 - MolGPT, 012 - JT-VAE), middle: protein-based gener-
ators (008 - DrugFlow), bottom: ligand-based generators (016 - GCPG).
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008-03063

016-07684

(b) Synthesis paths for some of
the top molecules. Top: Mol-
GPT 015-07075 molecule; middle:
DrugFlow 008-03063 molecule; bot-
tom: GCPG 016-07684 molecule.

Figure 2: The top nine generated molecules with their synthesis paths.

4.1 UNCONDITIONAL MOLECULE GENERATORS

We evaluate E(3)DM, HierGraphVAE, JT-VAE, MoLeR, MolGPT, and TGM-DLM. These models
do not condition on target ligands or pocket structure. Results are presented in Table 2. VAE models
(especially JT-VAE) retain markedly more candidates through structural filters and synthetic acces-
sibility estimation stages than E(3)DM or MolGPT models, showing that these models are able to
sample molecules that are valid and not chemically complex; E(3)DM collapses at synthetic acces-
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Results are presented in Table 4. Although Dragonfly passes the first stage with only 27.79% of
initial molecules, the number of molecules that pass medicinal chemists evaluation is the highest
among all families, suggesting that Dragonfly is able to sample molecules that are likely to be valid
and useful. DiffSBDD, Dragonfly, DrugFlow, Pocket2Mol and TargetDiff strongly dominate other
models while passing descriptors stage. However, DiffSBDD, DrugFlow, Pocket2Mol, TargetDiff
loses more than a quarter of molecules after structural filters stage, suggesting that those models
struggle with synthesis of non toxic and pan-assay-free molecules. TargetDiff does not pass docking
and binding affinity estimation stage, and DiffSBDD does not pass medicinal chemistry evaluation
stage, while DrugFlow is the second most successful model.

Table 4: Comparison of protein-based models, each with initial number of molecules Ngen = 10,000

Stage /Model DIFFSBDD DRAGONFLY DRAGONFLY (B) DRUGFLOW POCKET2MOL PROTOBIND-DIFF RESGEN TARGETDIFF
Descriptors 3665 2779 1022 5464 2657 1466 1080 3444

Structural Filters 197 1459 218 1392 682 195 255 136
Synthesis Feasibility 24 1207 38 453 137 102 62 4

Docking & Binding Aff. 13 575 15 344 69 66 37 0
Med.Chem. Evaluation 0 227 4 62 12 7 6 0

Pass 0 227 4 62 12 7 6 0

5 DISCUSSION AND CONCLUSION

Applying the same five-stage filtration across unconditional, ligand-based, and protein-based mod-
els reveals that across 210,000 generated molecules only 969 (0.461%) of generated molecules
pass end-to-end screening. Empirically, unconditional models have the highest overall pass rate
of 0.607%, producing molecules that correlate with basic requirements of early drug discovery.
Ligand-based models achieved moderate retention with 0.41% pass rate. Protein-based models are
left with the smallest fraction of passed molecules (0.398%), with Dragonfly achieving the highest
final pass rate of 227 molecules despite low initial retention. Across all families, streepest attri-
tion occurs at synthetic feasibility (⇡ 0.2501 molecules w.r.t. descriptors filtration) and medicinal
chemistry (⇡ 0.1535 molecules w.r.t. synthesis feasibility evaluation stage) evaluation stages. This
confirms prior findings that benchmark metrics, such as validity is weak predictor of downstream
utility. The explicit retrosynthesis gate (AiZynthFinder) is therefore critical to separate benchmark
overfitting from true drug-likeness.

Our results highlight several architecture-dependent trends across molecule generators. Equivariant
diffusion models (E(3)DM, DiffSBDD, TargetDiff) exceed at encoding 3D symmetries and geo-
metric constraints, yet collapse under synthetic accessibility evaluation, suggesting that geometric
fidelity alone is insufficient for practical usage. Graph-based VAEs (JT-VAE, HierGraphVAE) bal-
ance validity and synthesizability better than other unconditional models, confirming the hypothesis
that scaffold-aware decoders reduce chemical complexity. REINVENT4 is highly sensitive to prior
choice: broad priors generalize well through the pipeline, while similarity-based or transfer-learned
priors reduce downstream retention. Genetic optimizers (MolFinder) find high-scoring candidates
without pretraining but enrich high structural alert rates, highlighting the exploration-safety trade-
off. Pharmacophore-based models (GCPG, PGMG) confirm the value of explicit interaction motif
bias, yielding high enrichment, although PGMG shows low overall pass-rate.

Our findings emphasize that standard generative benchmarks are not good proxies for real-world
performance. Optimizing for validity, synthesis, or pocket fidelity independently is insufficient for
actionable chemical space that requires alignment across all objectives simultaneously. That is why
evaluation should integrate: (i) multistage filtering pipeline (descriptors, structural alerts, synthe-
sis feasibility, docking and binding affinity, and medicinal chemistry stages); (ii) synthesis-aware
metrics beyond SA scores; and (iii) stage failures analysis.

While our pipeline integrates synthesis and docking gates, it does not yet capture long-range phar-
macokinetics, ADMET liabilities, or clinical viability. Future work should couple generative models
with multiscale predictions, and uncertainty-aware evaluation of generated molecules.
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sibility stage and no candidates remain after this stage; TGM-DLM leaves with the least candidates,
mostly due to struggle with validity, filtering out most molecules on descriptors stage.

Table 2: Comparison of unconditional models, each with initial number of molecules Ngen = 10,000

Stage /Model E(3)DM HIERGRAPHVAE JT-VAE MOLER MOLGPT TGM-DLM
Descriptors 3520 3579 7586 3193 3474 1216

Structural Filters 75 1176 2765 718 1029 100
Synthesis Feasibility 0 975 1549 557 679 35

Docking & Binding Aff. 0 477 816 323 340 10
Med.Chem. Evaluation 0 53 181 65 64 1

Pass 0 53 181 65 64 1

4.2 LIGAND-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: GCPG, GENTRL, MolFinder, PGMG, and three dif-
ferent setups of REINVENT4: REINVENT4 (V), REINVENT4 (P), REINVENT4 (TL) described
below. We examine multiple REINVENT4 setups because sampling behavior depends strongly on
the learned prior and fine-tuning strategy; comparing variants isolates how prior choice and transfer
learning affect diversity, novelty, synthesizability, and downstream performance.
REINVENT4 (V) (vanilla) uses the out-of-the-box prior released by the authors, and no further
modifications applied to the model.
REINVENT4 (P) (prior) is a similarity-based REINVENT4 prior released by the authors that was
trained under a medium Tanimoto similarity sampling mode.
REINVENT4 (TL) (transfer learning) is our transfer-learned prior, fine-tuned on known
KRAS G12D inhibitors to bias sampling toward the target chemical space. Training and imple-
mentation details are provided in Appendix C.

Results are presented in Table 3. GCPG sustains the highest end-to-end retention, resulting in
110 molecules after medicinal chemists evaluation stage. REINVENT4 (V) yields more success
molecules (93) than REINVENT4 (P) and REINVENT4 (TL) with 17 and 32 molecules respec-
tively, showing that a broader prior favored downstream filtering pipeline, although sampling 10,000
molecules for REINVENT4 (V) required more attempts. PGMG underperforms early at the de-
scriptors stage and retains the fewest candidates, however, the fraction of molecules that passed
docking and binding affinity estimation stage with respect to synthetic feasibility stage is the high-
est (19/22 = 0.864), indicating that pharmacophore-based models tend to generate molecules, that
are indeed likely to capture pocket shape geometry and complementarity, but PGMG struggles with
overall molecule validity.

Table 3: Comparison of ligand-based models, each with initial number of Ngen = 10,000 molecules

Stage /Model GCPG GENTRL MOLFINDER PGMG REINVENT4 (V) REINVENT4 (P) REINVENT4 (TL)
Descriptors 6616 5669 1592 195 4089 936 1204

Structural Filters 4168 1925 366 37 1325 593 413
Synthesis Feasibility 1064 303 265 22 918 222 276

Docking & Binding Aff. 648 238 200 19 518 72 164
Med.Chem. Evaluation 110 24 7 4 93 17 32

Pass 110 24 7 4 93 17 32

4.3 PROTEIN-BASED MOLECULE GENERATORS

For benchmarking, we compare baselines: DiffSBDD, Dragonfly, Dragonfly biased (b), DrugFlow,
Pocket2Mol, ResGen, TargetDiff. We evaluated two different Dragonfly setups to investigate the
overall performance of an unmodified model provided by the authors, and a fine-tuned model biased
with only one target compound descriptors.
Dragonfly is an out-of-the-box model released by the authors with no modifications applied to the
model.
Dragonfly (b) (biased) leverages built-in ability to condition sampling on target compound descrip-
tors. Specifically, bias is applied toward molecular weight, number of rotatable bonds, hydrogen
bond donors and acceptors, topological polar surface area, and logP, thereby steering the generation
toward molecules with physicochemical properties aligned with the target profile.
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(E(3)DM, DiffSBDD, TargetDiff). Graph-based VAEs with scaffold-aware decoders have shown
to yield high validity, but may sample synthetically complex chemotypes that are hard to synthesize
without additional constraints (JT-VAE, HierGraphVAE, MoLeR). Autoregressive SMILES models
are highly sensitive to the learned prior, which substantially alter novelty, similarity to training set,
and downstream filtering rates (REINVENT4). Genetic optimizers can rapidly find high scoring
and novel molecules without pretraining but may increase structural-alert incidence and reduce syn-
thetic success (MolFinder). Flow matching approaches have reported stable training and efficient
sampling that preserves training distribution fidelity (DrugFlow). Pharmacophore-guided methods
explicitly bias generation toward interaction motifs and therefore are expected to increase dock-
ing enrichment (GCPG, PGMG). Finally, prior work has repeatedly shown that high performance
on common generative benchmarks does not guarantee synthesizability in practice, motivating our
explicit retrosynthesis and AiZynthFinder gate.

Overall pass rate is low for all families: 364 molecules (0.607% of 60,000) from unconditional
generators, 287 molecules (0.41% of 70,000) from ligand-based generators, and 318 molecules
(0.398% of 90,000) from protein-based generators. Unconditional models are the most successful,
with 0.607% from initial number of molecules passing all stages, showing that such models are
able to capture general molecular constraints much better than conditioned models. This may be
due to overfitting to features that do not translate into tractable, candidates acceptable for medicinal
chemistry.

Figure 2a shows the top three molecules from each model family. Consensus scores were calculated
as the arithmetic mean of the inverted and min-max normalized values of smina and GNINA docking
scores, and the Boltz-2 binding affinity predictions. Figure 2b shows some synthesis path calculated
via AiZynthFinder tool for the top molecules. Rest paths are available in the Appendix B.3.

(a) Top generated molecules among three families. Top: unconditional
generators (015 - MolGPT, 012 - JT-VAE), middle: protein-based gener-
ators (008 - DrugFlow), bottom: ligand-based generators (016 - GCPG).

015-07075

008-03063

016-07684

(b) Synthesis paths for some of
the top molecules. Top: Mol-
GPT 015-07075 molecule; middle:
DrugFlow 008-03063 molecule; bot-
tom: GCPG 016-07684 molecule.

Figure 2: The top nine generated molecules with their synthesis paths.

4.1 UNCONDITIONAL MOLECULE GENERATORS

We evaluate E(3)DM, HierGraphVAE, JT-VAE, MoLeR, MolGPT, and TGM-DLM. These models
do not condition on target ligands or pocket structure. Results are presented in Table 2. VAE models
(especially JT-VAE) retain markedly more candidates through structural filters and synthetic acces-
sibility estimation stages than E(3)DM or MolGPT models, showing that these models are able to
sample molecules that are valid and not chemically complex; E(3)DM collapses at synthetic acces-
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(E(3)DM, DiffSBDD, TargetDiff). Graph-based VAEs with scaffold-aware decoders have shown
to yield high validity, but may sample synthetically complex chemotypes that are hard to synthesize
without additional constraints (JT-VAE, HierGraphVAE, MoLeR). Autoregressive SMILES models
are highly sensitive to the learned prior, which substantially alter novelty, similarity to training set,
and downstream filtering rates (REINVENT4). Genetic optimizers can rapidly find high scoring
and novel molecules without pretraining but may increase structural-alert incidence and reduce syn-
thetic success (MolFinder). Flow matching approaches have reported stable training and efficient
sampling that preserves training distribution fidelity (DrugFlow). Pharmacophore-guided methods
explicitly bias generation toward interaction motifs and therefore are expected to increase dock-
ing enrichment (GCPG, PGMG). Finally, prior work has repeatedly shown that high performance
on common generative benchmarks does not guarantee synthesizability in practice, motivating our
explicit retrosynthesis and AiZynthFinder gate.

Overall pass rate is low for all families: 364 molecules (0.607% of 60,000) from unconditional
generators, 287 molecules (0.41% of 70,000) from ligand-based generators, and 318 molecules
(0.398% of 90,000) from protein-based generators. Unconditional models are the most successful,
with 0.607% from initial number of molecules passing all stages, showing that such models are
able to capture general molecular constraints much better than conditioned models. This may be
due to overfitting to features that do not translate into tractable, candidates acceptable for medicinal
chemistry.

Figure 2a shows the top three molecules from each model family. Consensus scores were calculated
as the arithmetic mean of the inverted and min-max normalized values of smina and GNINA docking
scores, and the Boltz-2 binding affinity predictions. Figure 2b shows some synthesis path calculated
via AiZynthFinder tool for the top molecules. Rest paths are available in the Appendix B.3.

(a) Top generated molecules among three families. Top: unconditional
generators (015 - MolGPT, 012 - JT-VAE), middle: protein-based gener-
ators (008 - DrugFlow), bottom: ligand-based generators (016 - GCPG).
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(b) Synthesis paths for some of
the top molecules. Top: Mol-
GPT 015-07075 molecule; middle:
DrugFlow 008-03063 molecule; bot-
tom: GCPG 016-07684 molecule.

Figure 2: The top nine generated molecules with their synthesis paths.

4.1 UNCONDITIONAL MOLECULE GENERATORS

We evaluate E(3)DM, HierGraphVAE, JT-VAE, MoLeR, MolGPT, and TGM-DLM. These models
do not condition on target ligands or pocket structure. Results are presented in Table 2. VAE models
(especially JT-VAE) retain markedly more candidates through structural filters and synthetic acces-
sibility estimation stages than E(3)DM or MolGPT models, showing that these models are able to
sample molecules that are valid and not chemically complex; E(3)DM collapses at synthetic acces-
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• Standard generative benchmarks are not good proxies for real-world performance; 
optimizing for validity, synthesis or pocket fidelity independently is insufficient for 
actionable chemical space 

• Rigorous filtration is essential for improving success rates and reducing costs by 
collecting and proceeding those molecules that meet chemical, medicinal, and task-
dependent criteria 

• Our Five-Stage Filtering Pipeline prioritizes stress-testing molecular generators against 
constraints that matter in early drug discovery 

• Under our Five-Stage Filtering Pipeline, only a small fraction (less that 1%) of generated 
molecules pass all filters and remain applicable for future work
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