

Do-No-Harm Molecular Generation: 12-Model Benchmark and KRAS G12D Case Study

Presented by: D. Ryabchenko^{1,2}, podariya12@gmail.com

Joint work with: P. Gurevich^{1,2}, S. Kadyrov¹, O. Tinkov¹, S. Nikolenko¹, D. Frolova^{1,2}, A. Shapeev^{1,2}, M. Pak^{1,2}

Monday, 20th October, 2025

¹Ligand Pro, Moscow, Russia;

²Skolkovo Institute of Science and Technology, Moscow, Russia

INTRODUCTION

FIVE-STAGE FILTERING PIPELINE

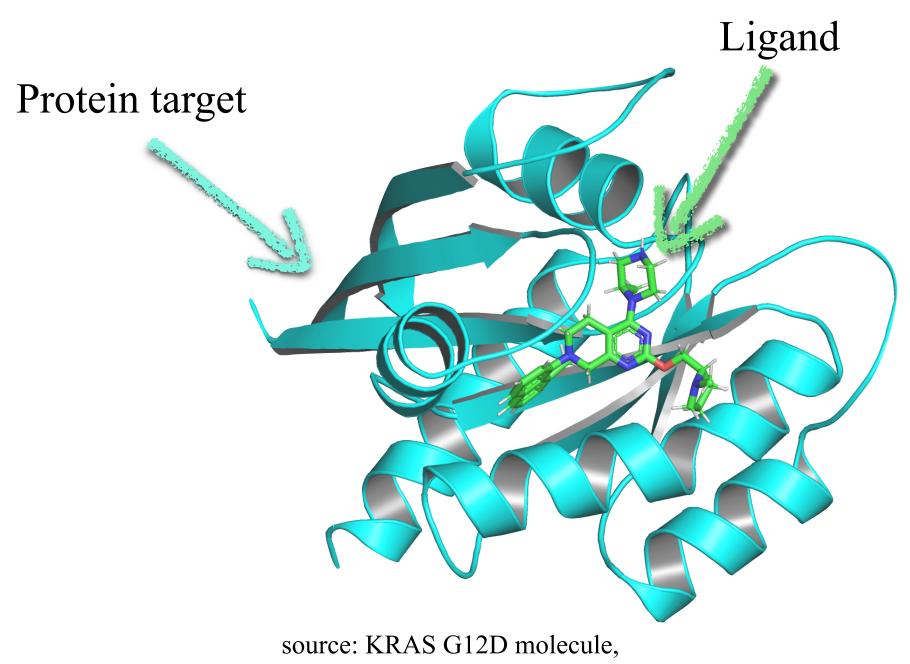
RESULTS

CONCLUSION& DISCUSSION

INTRODUCTION

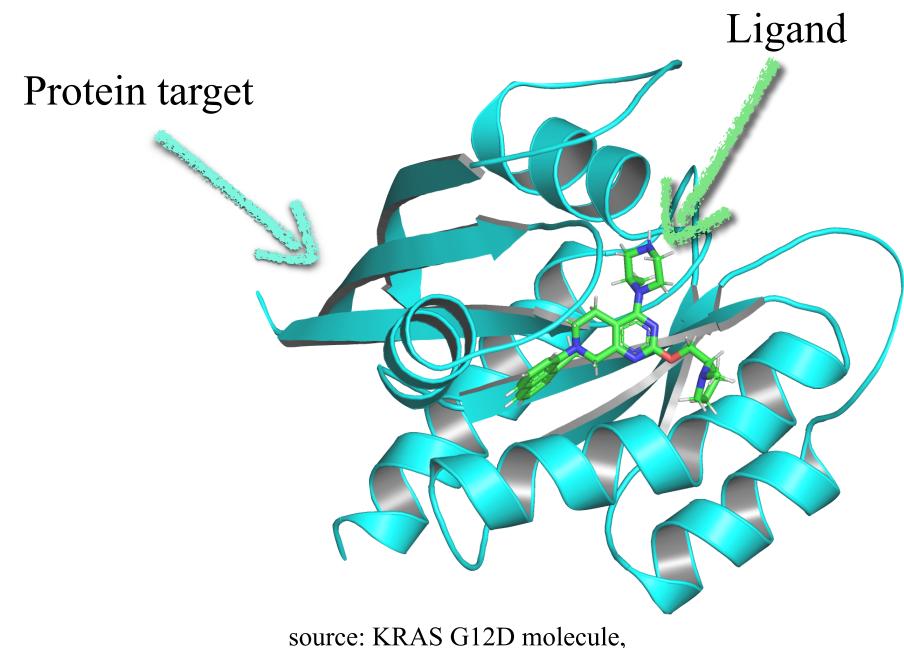
FIVE-STAGE FILTERING PIPELINE

RESULTS


CONCLUSION & DISCUSSION

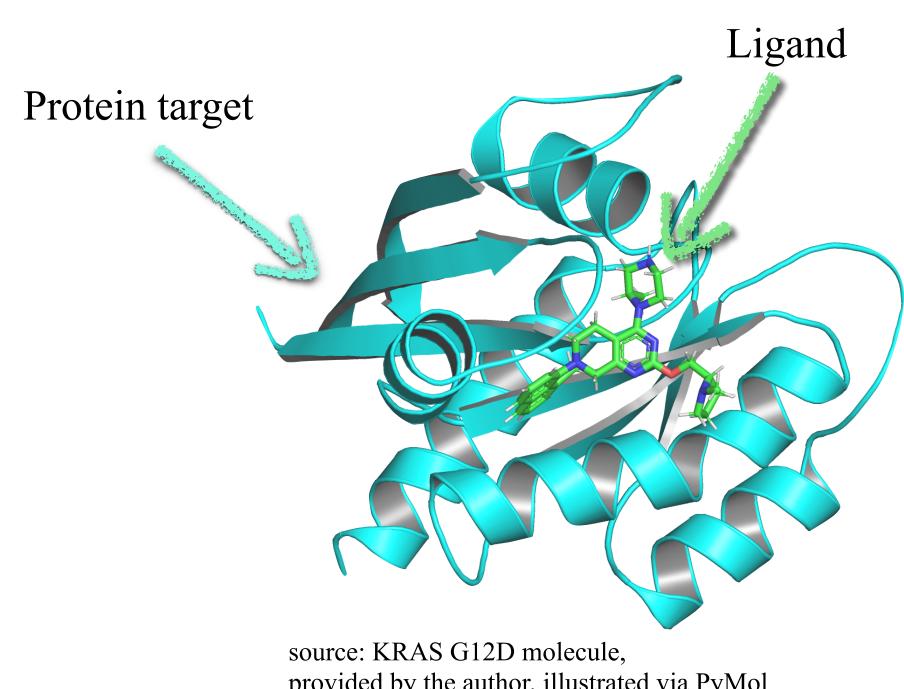
Molecule Generation

• **NECESSITY:** Accelerate the discovery of viable drug-like candidates AND save time, human, and money resources


Molecule Generation

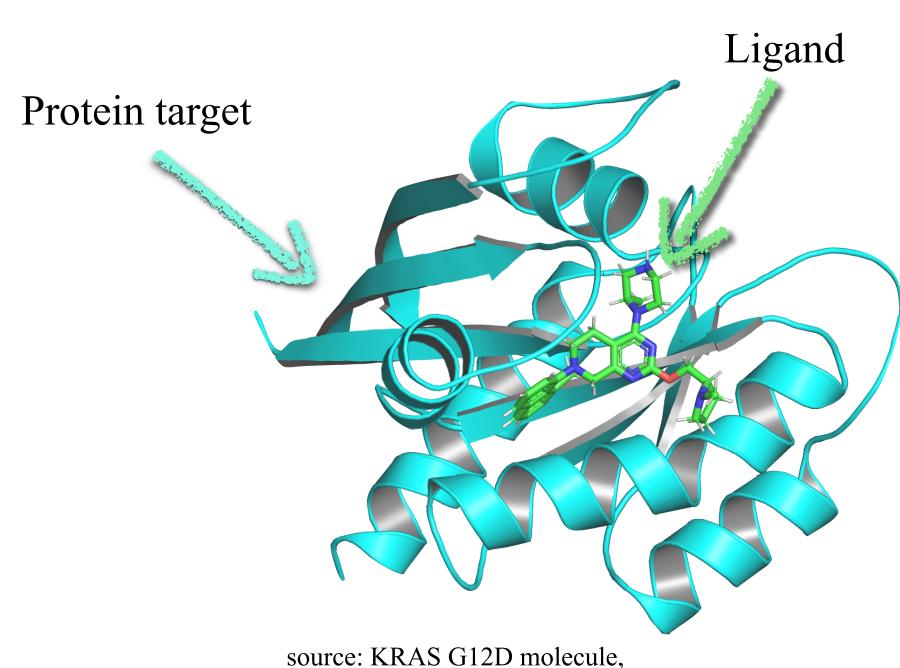
- NECESSITY: Accelerate the discovery of viable drug-like candidates AND save time, human, and money resources
- Generate a small molecule, known as ligand, that is
 - chemically valid, synthesizable, satisfying ADMET profile, binds to a target

Molecule Generation


- **NECESSITY:** Accelerate the discovery of viable drug-like candidates AND save time, human, and money resources
- Generate a small molecule, known as ligand, that is
 - chemically valid, synthesizable, satisfying ADMET profile, binds to a target
- **PROBLEM:** Most models show high metrics on popular generative benchmarks (GuacaMol¹, MOSES²), but often fail to translate into medicinally plausible compounds

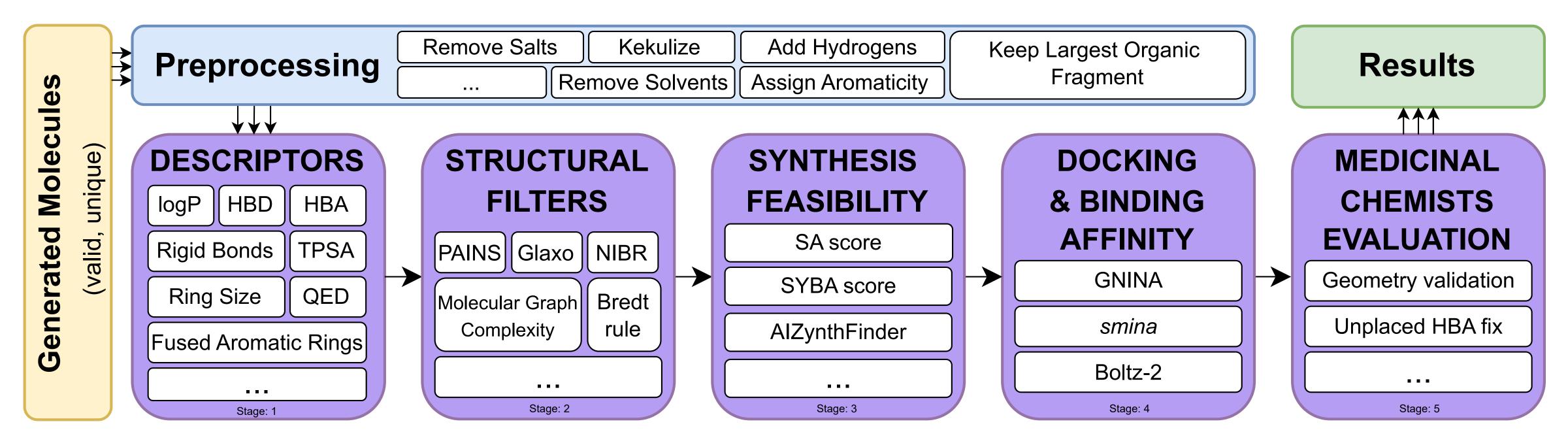
source: KRAS G12D molecule, provided by the author, illustrated via PyMol

Molecule Generation

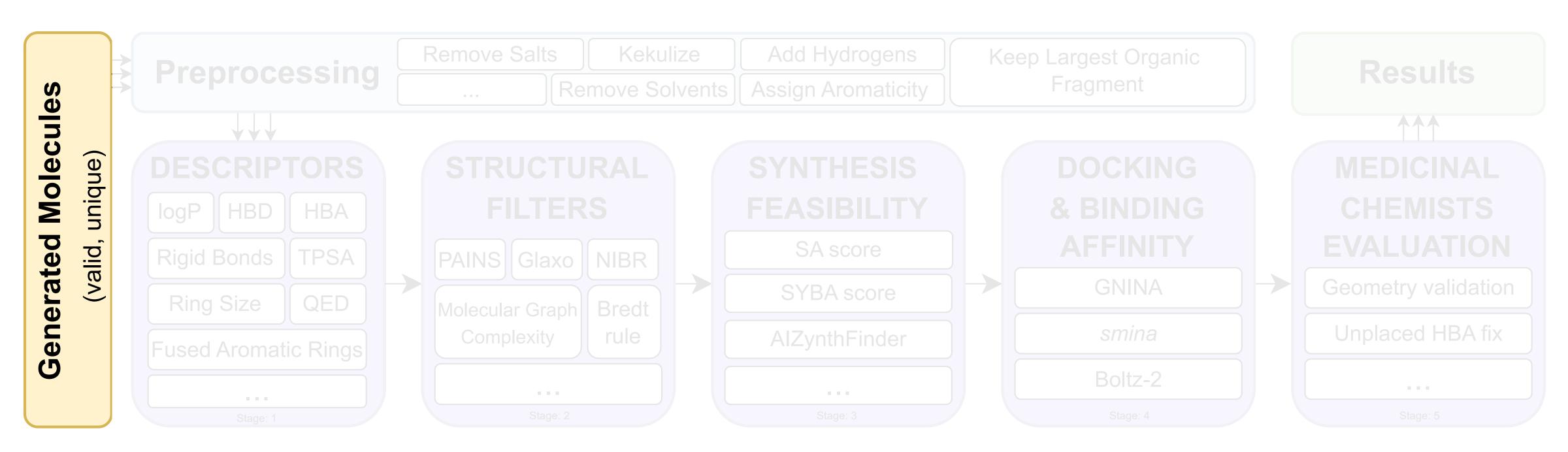

- NECESSITY: Accelerate the discovery of viable drug-like candidates AND save time, human, and money resources
- Generate a small molecule, known as ligand, that is
 - chemically valid, synthesizable, satisfying ADMET profile, binds to a target
- PROBLEM: Most models show high metrics on popular generative benchmarks (GuacaMol¹, MOSES²), but often fail to translate into medicinally plausible compounds
- SOLUTION: Comprehensive, practice-oriented benchmark for evaluation under realistic medicinal chemistry constraints

Molecule Generation

- **NECESSITY:** Accelerate the discovery of viable drug-like candidates AND save time, human, and money resources
- Generate a small molecule, known as ligand, that is
 - chemically valid, synthesizable, satisfying ADMET profile, binds to a target
- **PROBLEM:** Most models show high metrics on popular generative benchmarks (GuacaMol¹, MOSES²), but often fail to translate into medicinally plausible compounds
- **SOLUTION:** Comprehensive, practice-oriented benchmark for evaluation under realistic medicinal chemistry constraints

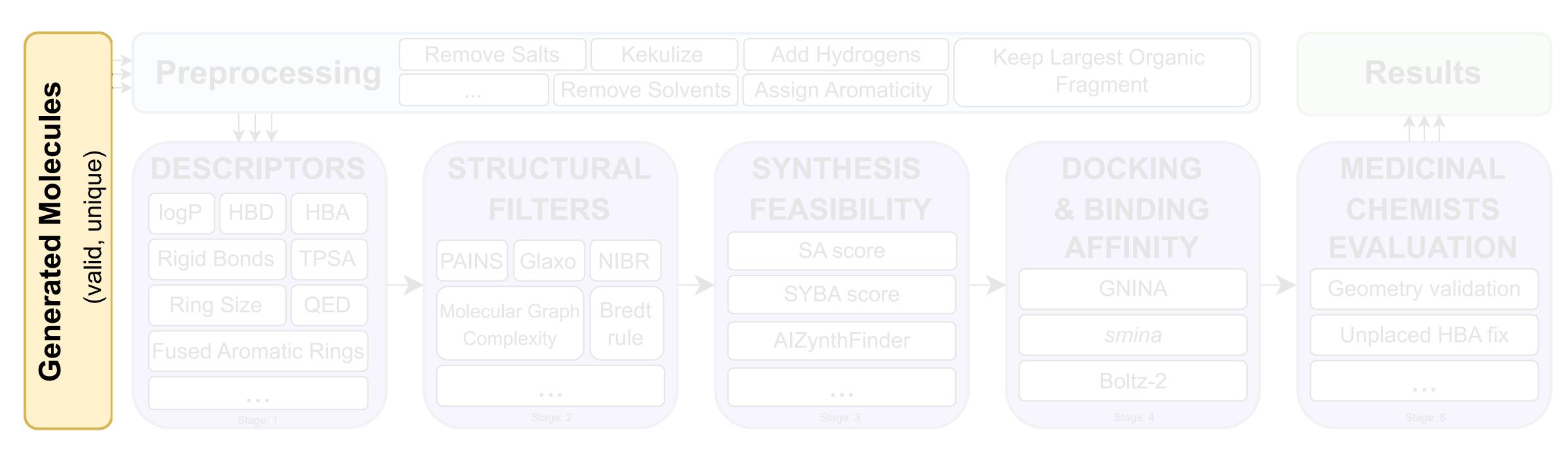

source: KRAS G12D molecule, provided by the author, illustrated via PyMol

INTRODUCTION

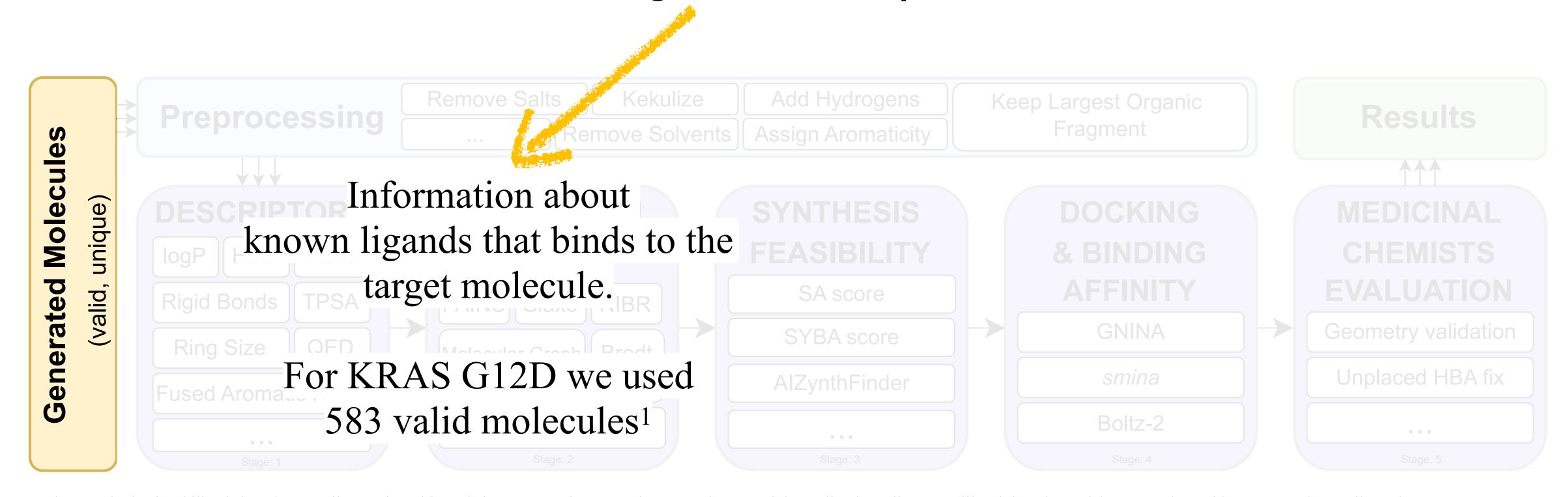

FIVE-STAGE FILTERING PIPELINE

RESULTS

CONCLUSION & DISCUSSION

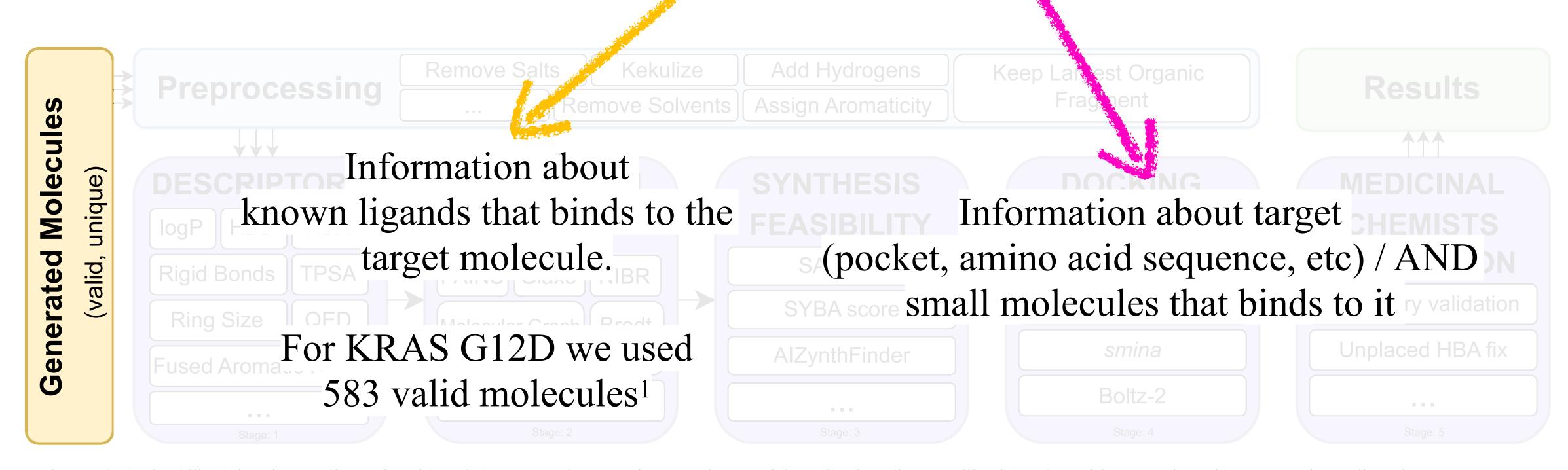


Generate Molecules


Generate Molecules

- Baseline models collection of ligand-based, and protein-based models (total 12 models).

Generate Molecules


- Baseline models collection of ligand-based, and protein-based models (total 12 models).

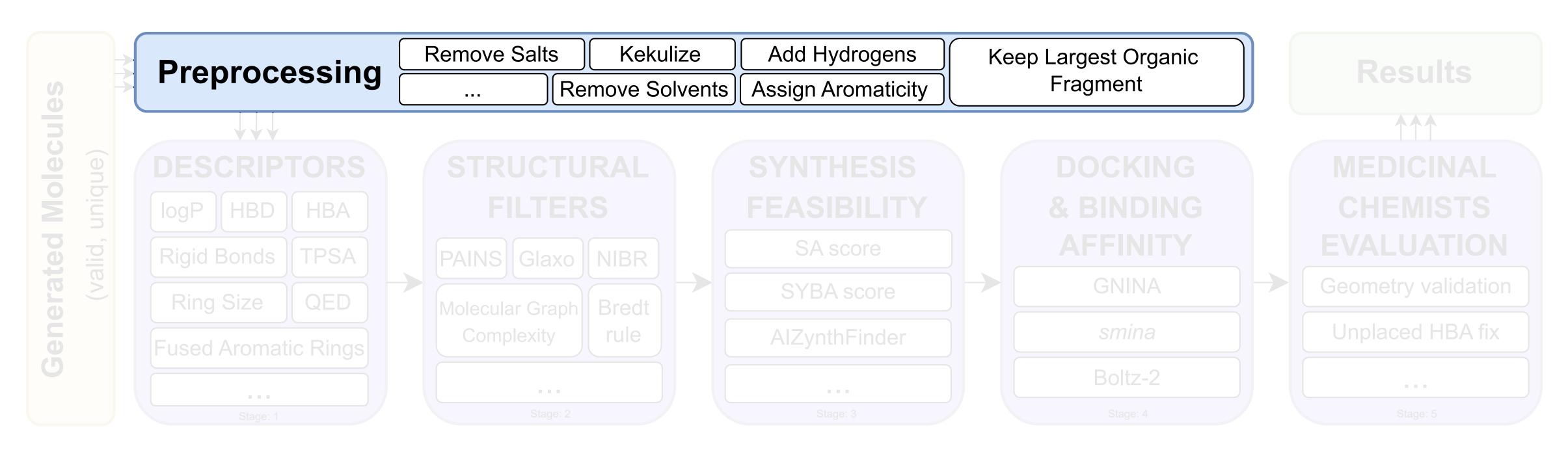
¹Mohammad Ghazi Vakili, Christoph Gorgulla, Jamie Snider, AkshatKumar Nigam, Dmitry Bezrukov, Daniel Varoli, Alex Aliper, Daniil Polykovsky, Krishna M Padmanabha Das, Huel Cox Iii, et al. Quantum-computing-enhanced algorithm unveils potential kras inhibitors. *Nature Biotechnology*, pp. 1–6, 2025.

Generate Molecules

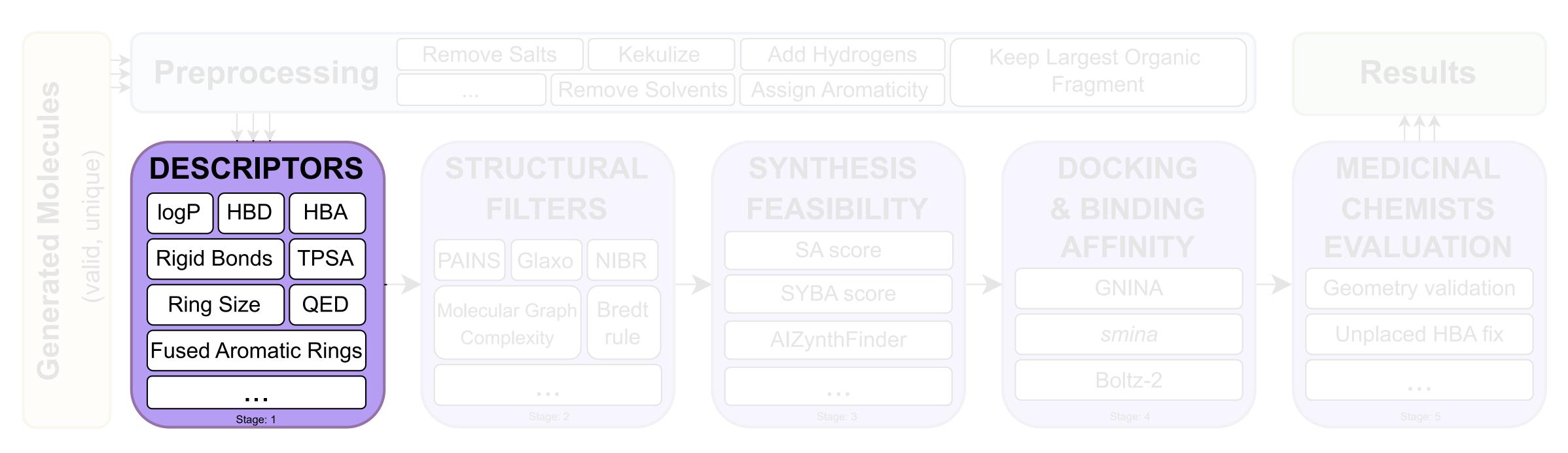
- Baseline models collection of ligand-based, and protein-based models (total 12 models).

¹Mohammad Ghazi Vakili, Christoph Gorgulla, Jamie Snider, AkshatKumar Nigam, Dmitry Bezrukov, Daniel Varoli, Alex Aliper, Daniil Polykovsky, Krishna M Padmanabha Das, Huel Cox Iii, et al. Quantum-computing-enhanced algorithm unveils potential kras inhibitors. *Nature Biotechnology*, pp. 1–6, 2025.

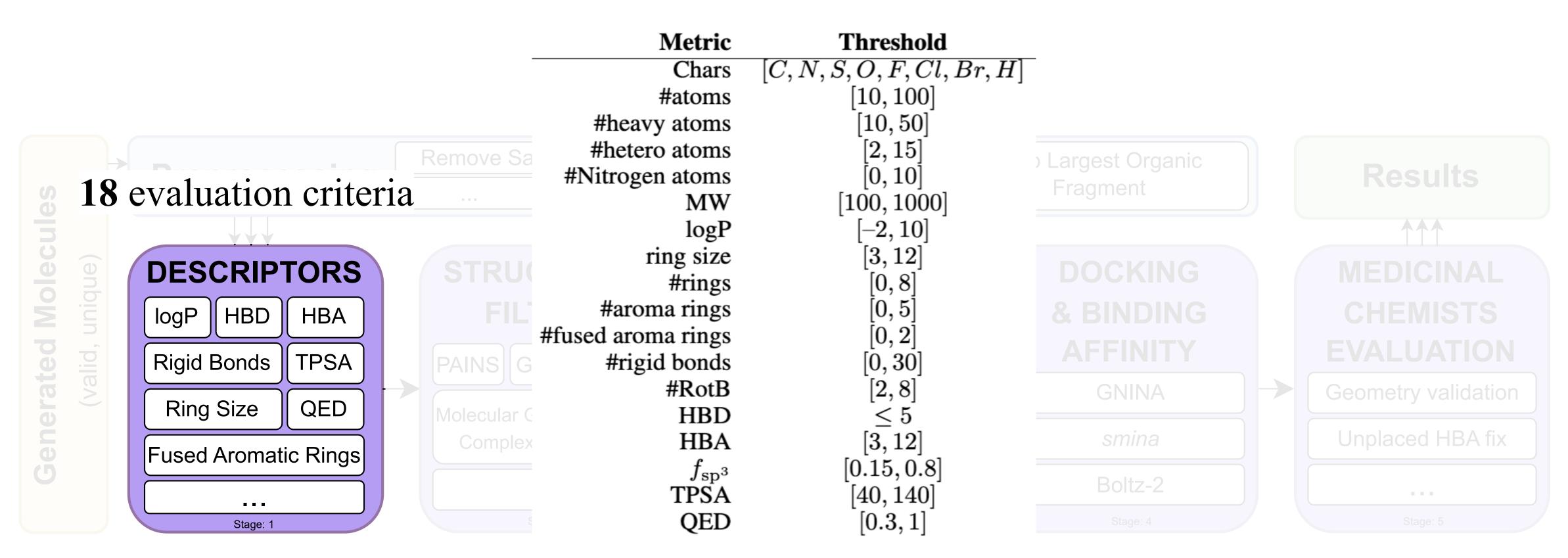
Generated Molecules (valid, unique)


Five-Stage Filtering Pipeline

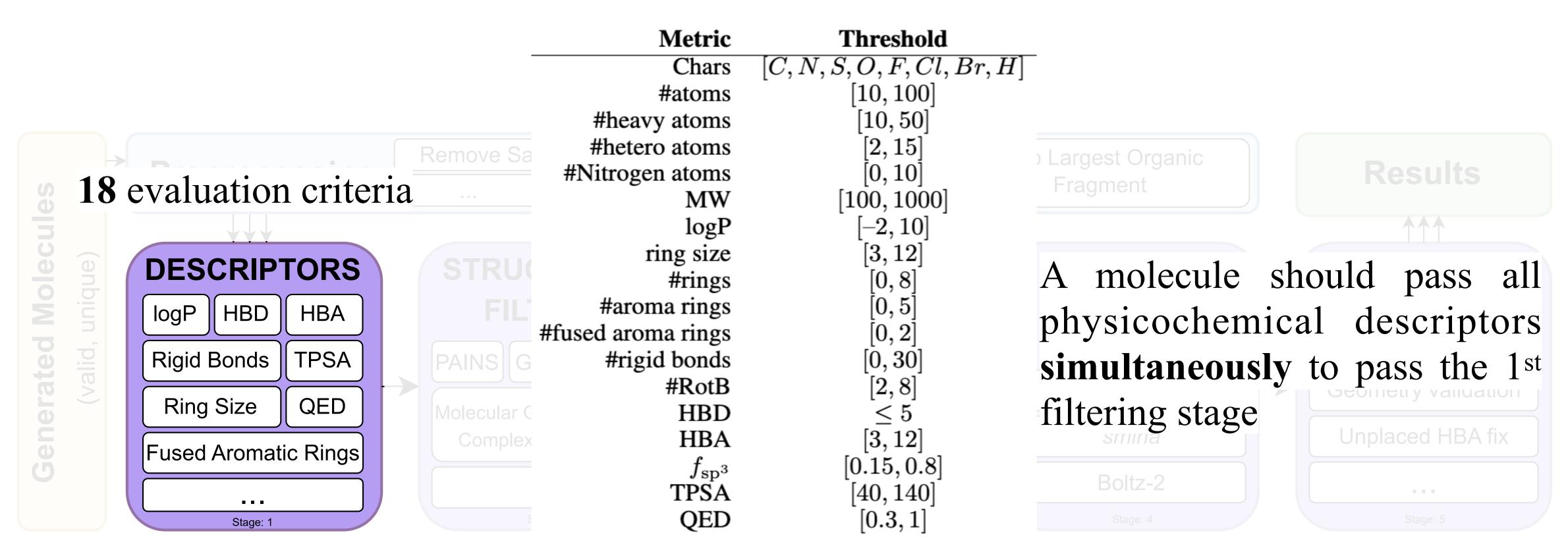
Generate Molecules


Table 1: Taxonomy of molecular generators considered in our benchmark, by model class (rows) and primary input representation (columns)

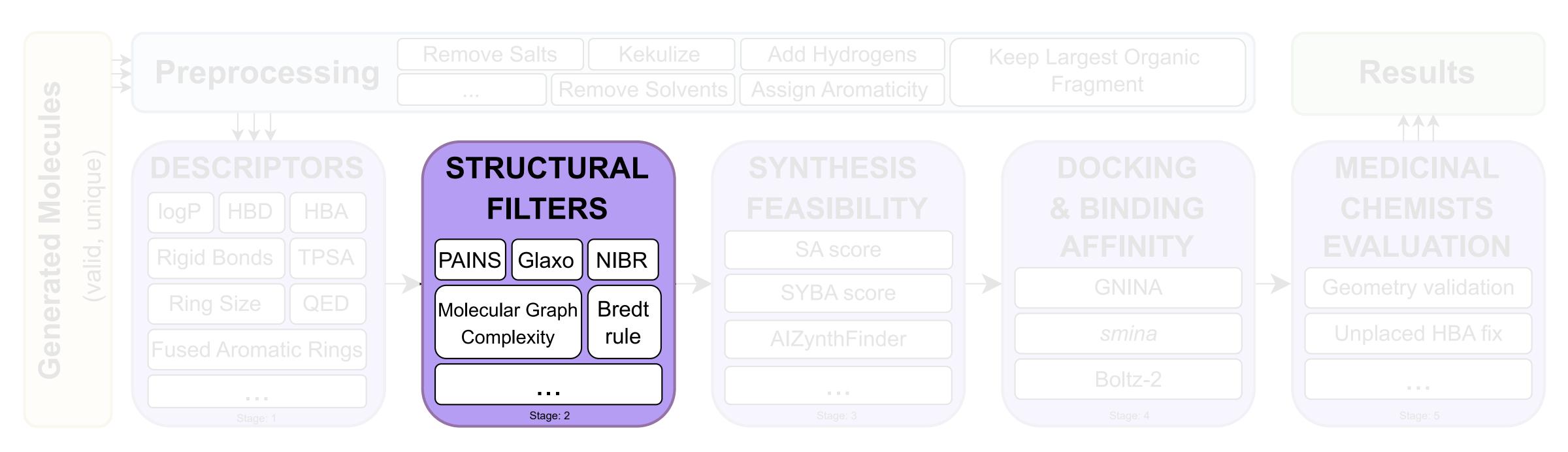
	Architecture /Model Type	LIGAND-BASED	PROTEIN-BASED		
	Genetic Algorithm	MolFinder (Kwon & Lee, 2021)			
	Variational Autoencoder	GENTRL (Zhavoronkov et al., 2019)	_	Organic	
		GCPG (Zou et al., 2025)	Dragonfly (Atz et al., 2024)		
	Autoregressive	PGMG (Zhu et al., 2023)	Pocket2Mol (Peng et al., 2022)		
		REINVENT4 (Loeffler et al., 2024)	ResGen (Zhang et al., 2023)		
	- · · ·		DiffSBDD (Schneuing et al., 2024)		
	Diffusion		ProtoBind-Diff (Mistryukova et al., 2025) TargetDiff (Guan et al., 2023)		
,	Flow matching	_	DrugFlow (Schneuing et al., 2025)	NA	Geometry validation
	ach madal gang	rotos 10 000 unique	and valid malagulas fo	mina	Unplaced HBA fix
\mathbf{L}	ach model gene	raies ro, vov umque	and valid molecules fo	I oltz-2	
fi	irther evaluation				
	multi v mummului	Stage: 2			

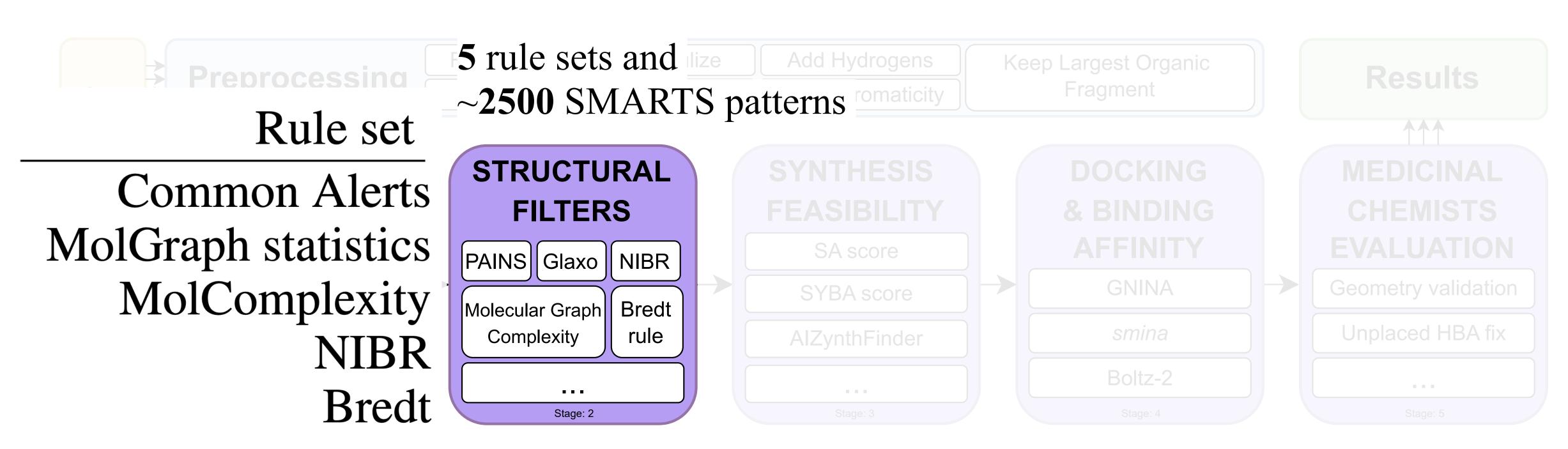

Molecules Preprocessing

Stage 1: Descriptors


Stage 1: Descriptors

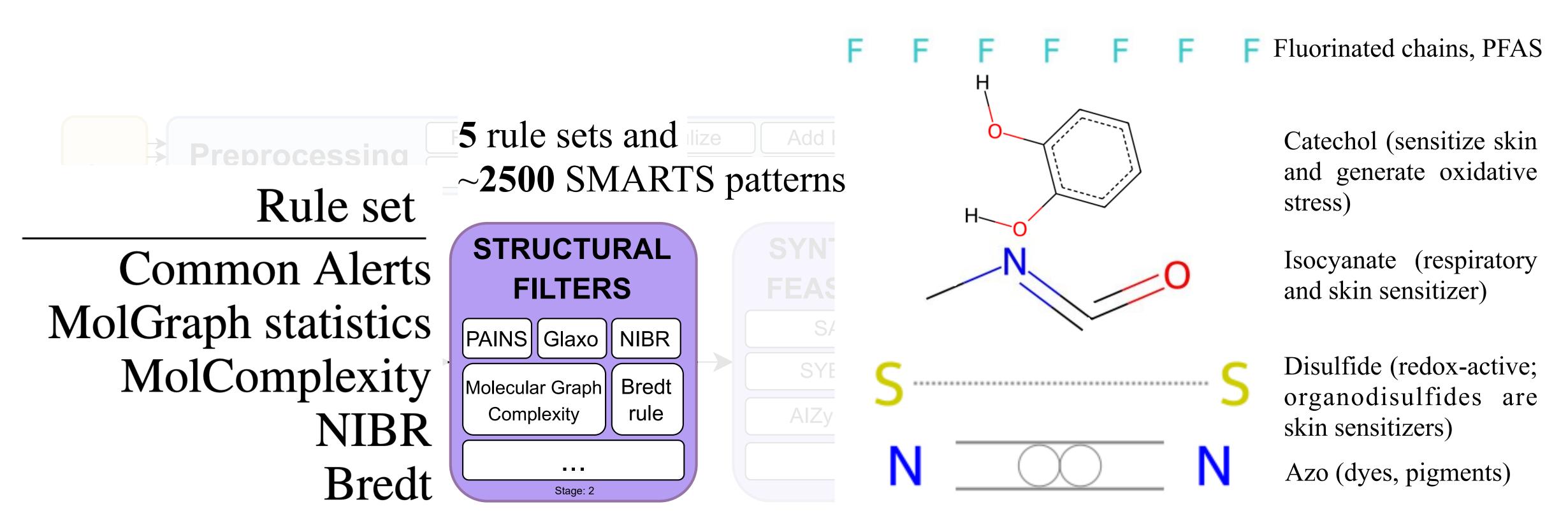
Stage 1: Descriptors


Stage 1: Descriptors

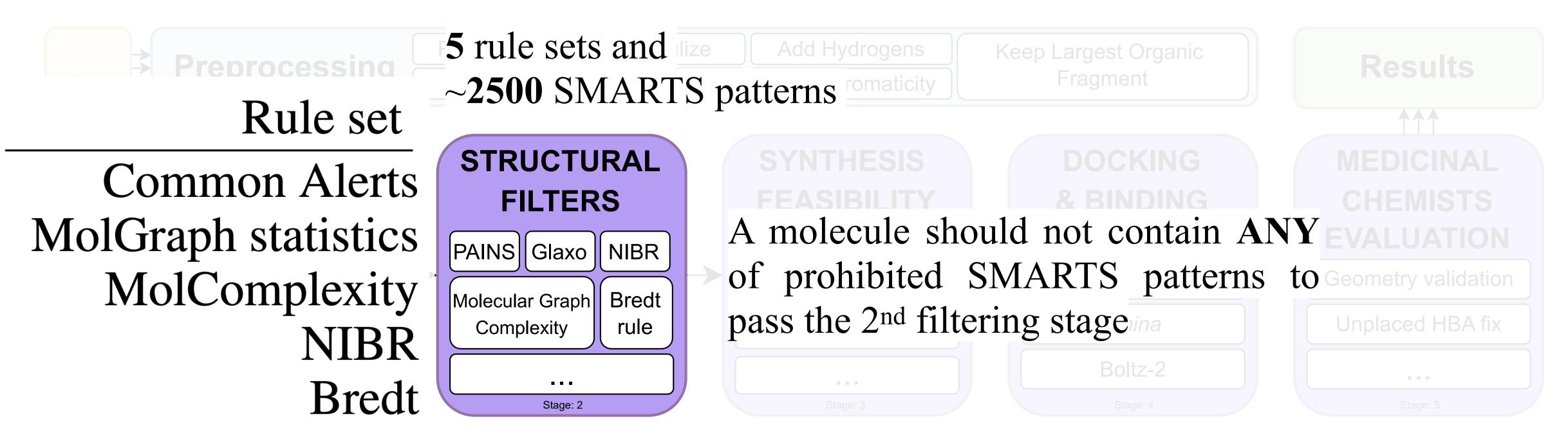

source: provided by the author

Molecules passed Stage 1 go to the Stage 2

Stage 2: Structural Filters

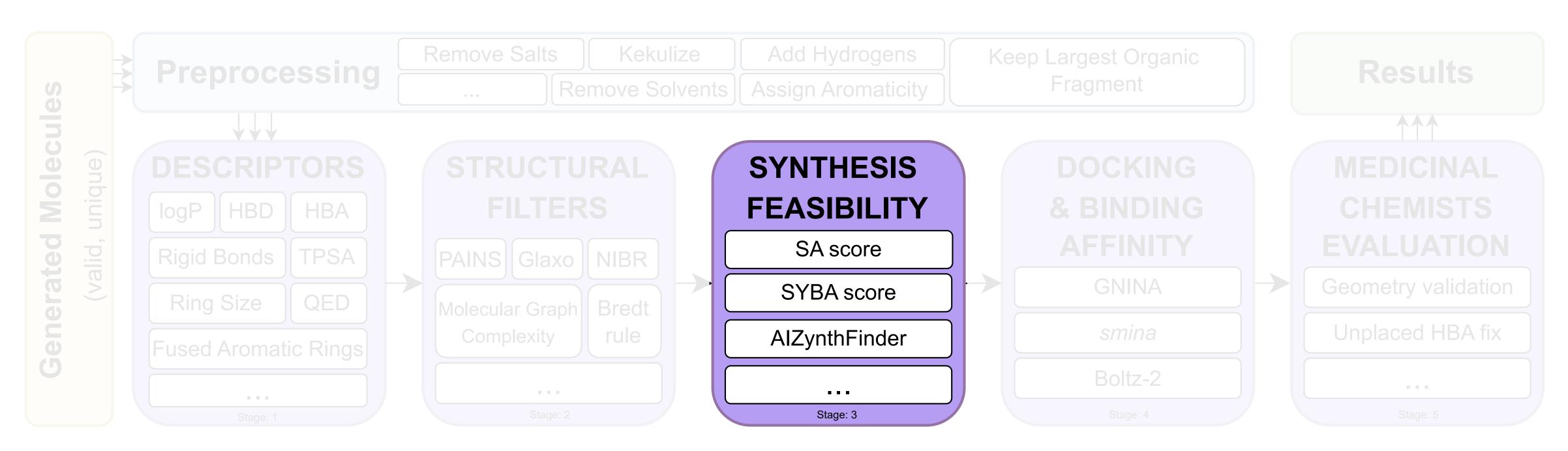


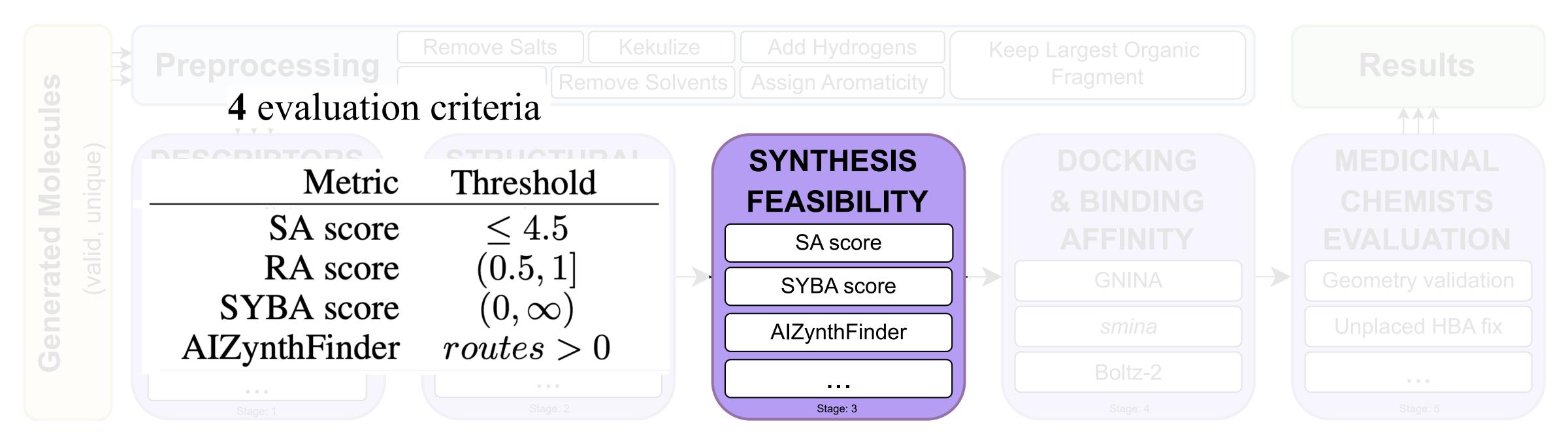
Stage 2: Structural Filters



Stage 2: Structural Filters

Toxic or reactive chemical substructures


Stage 2: Structural Filters


source: provided by the author

Molecules passed Stage 2 go to the Stage 3

Stage 3: Synthesis Feasibility

Stage 3: Synthesis Feasibility

Stage 3: Synthesis Feasibility

SA score - Synthetic Accessibility score¹ - synthetic complexity score from 1 (easy) to 10 (hard).

RA score - Retrosynthetic Accessibility score² - probability of being a synthetic path for a compound.

SYBA score - Synthetic Bayesian Accessibility score³ - classifier as easy or hard to synthesize.

AiZynthFinder⁴ - machine-learning-guided retrosynthetic workflow.st Organic 4 evaluation criteria **SYNTHESIS** Threshold Metric **FEASIBILITY** SA score < 4.5SA score (0.5, 1]RA score **GNINA** Geometry validation SYBA score $(0,\infty)$ SYBA score AlZynthFinder AIZynthFinder routes > 0Stage: 3

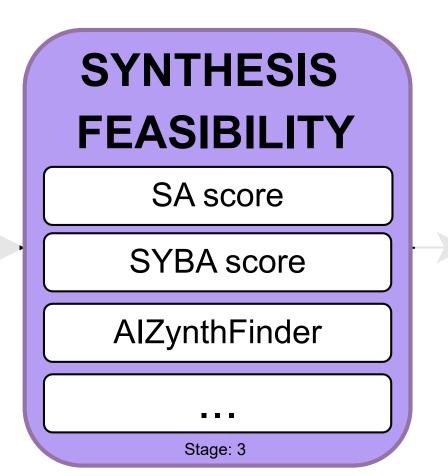
¹Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. *Journal of cheminformatics*, 1(1):8, 2009.

²Amol Thakkar, Veronika Chadimova, Esben Jannik Bjerrum, Ola Engkvist, and Jean-Louis Reymond. Retrosynthetic accessibility score (rascore)–rapid machine learned synthesizability classification from ai driven retrosynthetic planning. *Chemical science*, 12(9):3339–3349, 2021.

³Milan Vors ila k, Michal Kola r, Ivan C melo, and Daniel Svozil. Syba: Bayesian estimation of synthetic accessibility of organic compounds. *Journal of cheminformatics*, 12(1):35, 2020.

⁴Samuel Genheden, Amol Thakkar, Veronika Chadimova´, Jean-Louis Reymond, Ola Engkvist, and Esben Bjerrum. Aizynthfinder: a fast, robust and flexible open-source software for retrosynthetic planning. *Journal of cheminformatics*, 12(1):70, 2020.

Stage 3: Synthesis Feasibility


SA score - Synthetic Accessibility score¹ - synthetic complexity score from 1 (easy) to 10 (hard). RA score - Retrosynthetic Accessibility score² - probability of being a synthetic path for a compound.

SYBA score - Synthetic Bayesian Accessibility score³ - classifier as easy or hard to synthesize.

AiZynthFinder4 - machine-learning-guided retrosynthetic workflow.st Organic

4	1	1 •	• ,	•
	$\Theta M \Omega$	luation	Cr1te	2112
7	U v a	luativii	O110	JIIA

Metric	Threshold
SA score	≤ 4.5
RA score	(0.5, 1]
SYBA score	$(0,\infty)$
AIZynthFinder	routes > 0

A molecule should pass all synthetic feasibility criteria simultaneously to pass the 3rd filtering stage

Geometry validation

Soltz-2

Geometry validation

Unplaced HBA fix

¹Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. *Journal of cheminformatics*, 1(1):8, 2009.

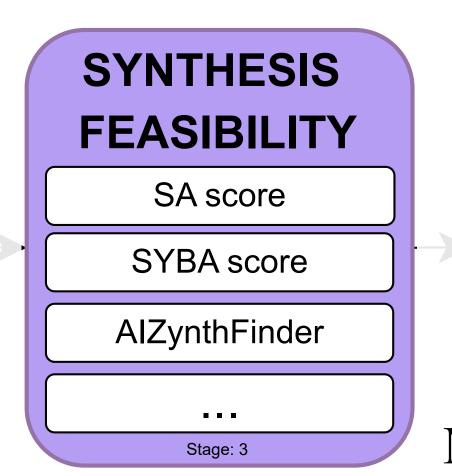
²Amol Thakkar, Veronika Chadimova, Esben Jannik Bjerrum, Ola Engkvist, and Jean-Louis Reymond. Retrosynthetic accessibility score (rascore)–rapid machine learned synthesizability classification from ai driven retrosynthetic planning. *Chemical science*, 12(9):3339–3349, 2021.

³Milan Vors ila k, Michal Kola r, Ivan C melo, and Daniel Svozil. Syba: Bayesian estimation of synthetic accessibility of organic compounds. *Journal of cheminformatics*, 12(1):35, 2020.

²Samuel Genheden, Amol Thakkar, Veronika Chadimova´, Jean-Louis Reymond, Ola Engkvist, and Esben Bjerrum. Aizynthfinder: a fast, robust and flexible open-source software for retrosynthetic planning. *Journal of cheminformatics*, 12(1):70, 2020.

Stage 3: Synthesis Feasibility

SA score - Synthetic Accessibility score¹ - synthetic complexity score from 1 (easy) to 10 (hard).


RA score - Retrosynthetic Accessibility score² - probability of being a synthetic path for a compound.

SYBA score - Synthetic Bayesian Accessibility score³ - classifier as easy or hard to synthesize.

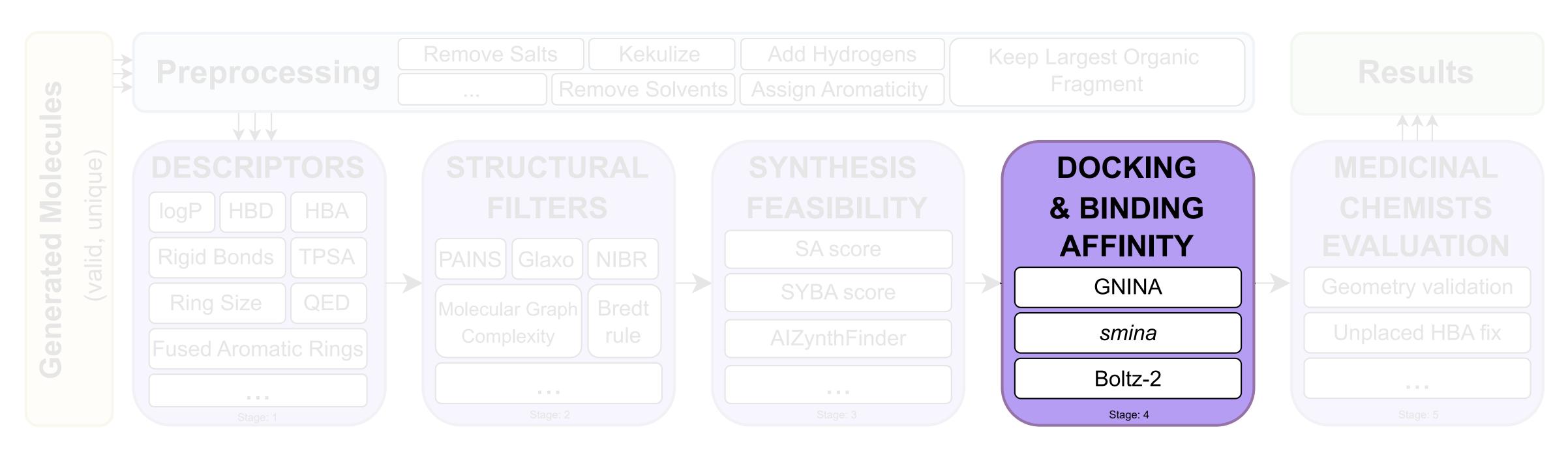
AiZynthFinder4 - machine-learning-guided retrosynthetic workflow.st Organic

4 evaluation criteria

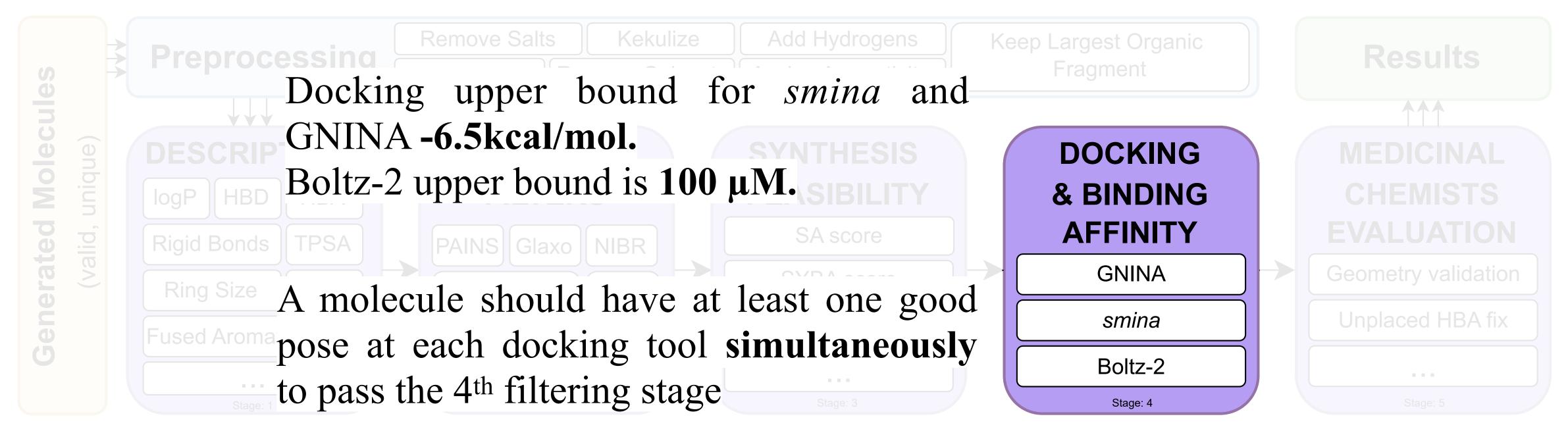
Threshold
≤ 4.5
(0.5, 1]
$(0,\infty)$
routes > 0

A molecule should pass all synthetic feasibility criteria simultaneously to pass the 3rd filtering stage

Molecules passed Stage 3 go to the Stage 4

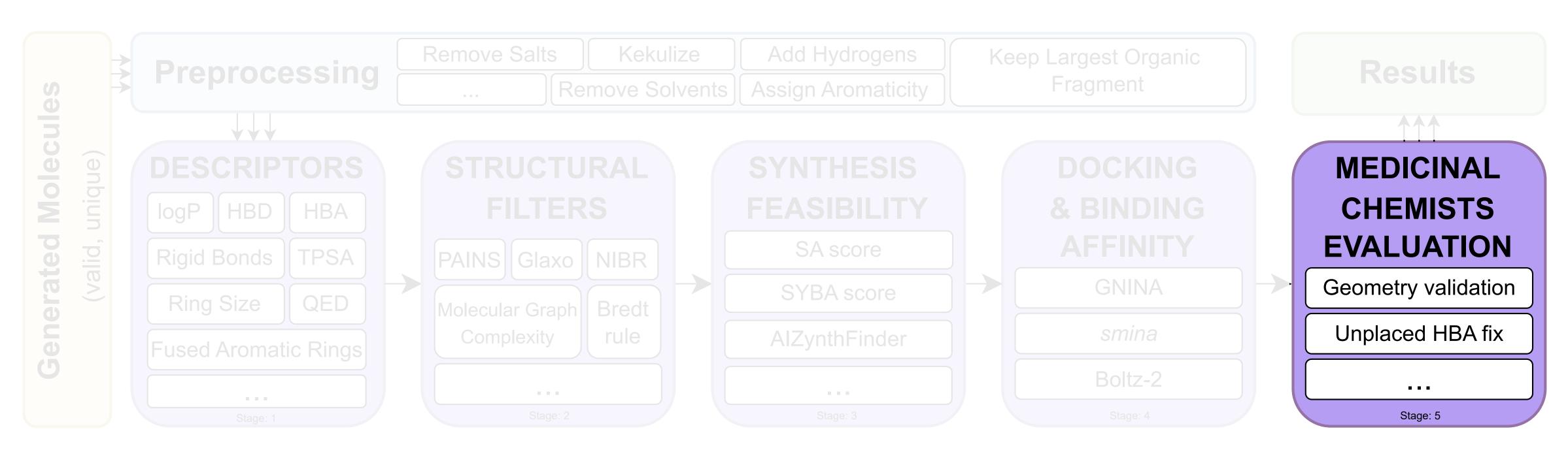

¹Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like molecules based on molecular complexity and fragment contributions. *Journal of cheminformatics*, 1(1):8, 2009.

²Amol Thakkar, Veronika Chadimova, Esben Jannik Bjerrum, Ola Engkvist, and Jean-Louis Reymond. Retrosynthetic accessibility score (rascore)—rapid machine learned synthesizability classification from ai driven retrosynthetic planning. *Chemical science*, 12(9):3339–3349, 2021.


³Milan Vors ila k, Michal Kola r, Ivan C melo, and Daniel Svozil. Syba: Bayesian estimation of synthetic accessibility of organic compounds. *Journal of cheminformatics*, 12(1):35, 2020.

²Samuel Genheden, Amol Thakkar, Veronika Chadimova´, Jean-Louis Reymond, Ola Engkvist, and Esben Bjerrum. Aizynthfinder: a fast, robust and flexible open-source software for retrosynthetic planning. *Journal of cheminformatics*, 12(1):70, 2020.

Stage 4: Docking and Binding Affinity Estimation


Stage 4: Docking and Binding Affinity Estimation

source: provided by the author

Molecules passed Stage 4 go to the Stage 5

Stage 5: Medicinal Chemists Evaluation

Stage 5: Medicinal Chemists Evaluation

Evaluation criteria:

- 1) Pose validation by geometry using PoseBusters¹
- 2) Pose validation by conformational energy using PoseBusters¹
- 3) Hydrogen bond donors and acceptors using ProLIF² and RDKit³
- 4) Pocket burial using RDKit³
- 5) Target-specific interaction with Asp12 using ProLIF²

PAINS Glaxo NIBR

A molecule should pass each evaluation criteria **simultaneously** to pass the 5th filtering stage and the entire pipeline.

MEDICINAL
CHEMISTS
EVALUATION
Geometry validation
Unplaced HBA fix

Stage: 5

¹Martin Buttenschoen, Garrett M Morris, and Charlotte M Deane. Posebusters: Ai-based docking methods fail to generate physically valid poses or generalise to novel sequences. *Chemical Science*, 15(9):3130–3139, 2024.

²Ce dric Bouysset and Se bastien Fiorucci. Prolif: a library to encode molecular interactions as fingerprints. Journal of cheminformatics, 13(1):72, 2021.

³Greg Landrum. Rdkit documentation. *Release*, 1(1-79):4, 2013.

INTRODUCTION

FIVE-STAGE FILTERING PIPELINE

RESULTS

CONCLUSION & DISCUSSION

Results

12 models and 15 model setups

Table 2: Comparison of ligand-based models, each with initial number of $N_{\text{gen}} = 10,000$ molecules

Stage /Model	GCPG	GENTRL	MolFinder	PGMG	REINVENT4 (V)	REINVENT4 (P)	REINVENT4 (TL)
Descriptors	6616	5669	1592	195	4089	936	1204
Structural Filters	4168	<u>1925</u>	366	37	1325	593	413
Synthesis Feasibility	1064	303	265	22	<u>918</u>	222	276
Docking & Binding Aff.	648	238	200	19	<u>518</u>	72	164
Med.Chem. Evaluation	110	24	7	4	<u>93</u>	17	32
Pass	110	24	7	4	93	17	32

Table 3: Comparison of protein-based models, each with initial number of N_{gen} = 10,000 molecules

Stage /Model	DIFFSBDD	DRAGONFLY	DRAGONFLY (B)	DrugFlow	POCKET2MOL	PROTOBIND-DIFF	ResGen	TARGETDIFF
Descriptors	3665	2779	1022	5464	2657	1466	1080	3444
Structural Filters	197	1459	218	<u>1392</u>	682	195	255	136
Synthesis Feasibility	24	1207	38	<u>453</u>	137	102	62	4
Docking & Binding Aff.	13	575	15	<u>344</u>	69	66	37	0
Med.Chem. Evaluation	0	227	4	<u>62</u>	12	7	6	0
Pass	0	227	4	62	12	7	6	0

Results

12 models and 15 model setups

Table 2: Comparison of ligand-based models, each with initial number of $N_{gen} = 10,000$ molecules

Stage /Model	GCPG	GENTRL	MolFinder	PGMG	REINVENT4 (V)	REINVENT4 (P)	REINVENT4 (TL)
Descriptors	6616	5669	1592	195	4089	936	1204
Structural Filters	4168	<u>1925</u>	366	37	1325	593	413
Synthesis Feasibility	1064	303	265	22	<u>918</u>	222	276
Docking & Binding Aff.	648	238	200	19	<u>518</u>	72	164
Med.Chem. Evaluation	110	24	7	4	93	17	32
Pass	110	24	7	4	93	17	32

Table 3: Comparison of protein-based models, each with initial number of N_{gen} = 10,000 molecules

Stage /Model	DIFFSBDD	DRAGONFLY	DRAGONFLY (B)	DrugFlow	POCKET2MOL	PROTOBIND-DIFF	RESGEN	TARGETDIFF
Descriptors	<u>3665</u>	2779	1022	5464	2657	1466	1080	3444
Structural Filters	197	1459	218	<u>1392</u>	682	195	255	136
Synthesis Feasibility	24	1207	38	<u>453</u>	137	102	62	4
Docking & Binding Aff.	13	575	15	<u>344</u>	69	66	37	0
Med.Chem. Evaluation	0	227	4	<u>62</u>	12	7	6	0
Pass	0	227	4	62	12	7	6	0

12 models and 15 model setups

Table 2: Comparison of ligand-based models, each with initial number of $N_{gen} = 10,000$ molecules

Stage /Model	GCPG	GENTRL	MolFinder	PGMG	REINVENT4 (V)	REINVENT4 (P)	REINVENT4 (TL)
Descriptors	6616	5669	1592	195	4089	936	1204
Structural Filters	4168	<u>1925</u>	366	37	1325	593	413
Synthesis Feasibility	1064	303	265	22	<u>918</u>	222	276
Docking & Binding Aff.	648	238	200	19	<u>518</u>	72	164
Med.Chem. Evaluation	110	24	7	4	93	17	32
Pass	110	24	7	4	93	17	32

REINVENT4¹ (V, vanilla): unmodified, out-of-the-box model **REINVENT4** (P, prior): provided prior with mol2mol medium Tanimoto similarity threshold of 0.7

REINVENT4 (TL, transfer-learning): fine-tuned REINVENT4 (V) on 583 known KRAS G12D inhibitors²

Table 3: Comparison of protein-based models, each with initial number of $N_{gen} = 10,000$ molecules

Stage /Model	DIFFSBDD	DRAGONFLY	Dragonfly (b)	DrugFlow	POCKET2MOL	PROTOBIND-DIFF	RESGEN	TARGETDIFF
Descriptors	3665	2779	1022	5464	2657	1466	1080	3444
Structural Filters	197	1459	218	<u>1392</u>	682	195	255	136
Synthesis Feasibility	24	1207	38	<u>453</u>	137	102	62	4
Docking & Binding Aff.	13	575	15	<u>344</u>	69	66	37	0
Med.Chem. Evaluation	0	227	4	<u>62</u>	12	7	6	0
Pass	0	227	4	62	12	7	6	0

Dragonfly³: unmodified, out-of-the-box model
Dragonfly (b, biased): condition sampling on target
compound descriptors

¹Hannes H Loeffler, Jiazhen He, Alessandro Tibo, Jon Paul Janet, Alexey Voronov, Lewis H Mervin, and Ola Engkvist. Reinvent 4: modern ai–driven generative molecule design. *Journal of Cheminformatics*, 16(1):20, 2024. ²Mohammad Ghazi Vakili, Christoph Gorgulla, Jamie Snider, AkshatKumar Nigam, Dmitry Bezrukov, Daniel Varoli, Alex Aliper, Daniil Polykovsky, Krishna M Padmanabha Das, Huel Cox Iii, et al. Quantum-computing-enhanced algorithm unveils potential kras inhibitors. *Nature Biotechnology*, pp. 1–6, 2025.

³Kenneth Atz, Leandro Cotos, Clemens Isert, Maria Ha°kansson, Dorota Focht, Mattis Hilleke, David F Nippa, Michael Iff, Jann Ledergerber, Carl CG Schiebroek, et al. Prospective de novo drug design with deep interactome learning. *Nature Communications*, 15(1):3408, 2024.

12 models and 15 model setups

Table 2: Comparison of ligand-based models, each with initial number of N_{gen} = 10,000 molecules

Stage /Model	GCPG	GENTRL	MolFinder	PGMG	REINVENT4 (V)	REINVENT4 (P)	REINVENT4 (TL)
Descriptors	6616	<u>5669</u>	1592	195	4089	936	1204
Structural Filters	4168	<u> 1925</u>	366	37	1325	593	413
Synthesis Feasibility	1064	303	265	22	<u>918</u>	222	276
Docking & Binding Aff.	648	238	200	19	<u>518</u>	72	164
Med.Chem. Evaluation	110	24	7	4	93	17	32
Pass	110	24	7	4	93	17	32

Table 3: Comparison of protein-based models, each with initial number of $N_{gen} = 10,000$ molecules

Stage /Model	DIFFSBDD	DRAGONFLY	Dragonfly (b)	DrugFlow	POCKET2MOL	PROTOBIND-DIFF	RESGEN	TARGETDIFF
Descriptors	<u>3665</u>	2779	1022	5464	2657	1466	1080	3444
Structural Filters	197	1459	218	<u>1392</u>	682	195	255	136
Synthesis Feasibility	24	1207	38	<u>453</u>	137	102	62	4
Docking & Binding Aff.	13	575	15	<u>344</u>	69	66	37	0
Med.Chem. Evaluation	0	227	4	62	12	7	6	0
Pass	0	227	4	62	12	7	6	0

12 models and 15 model setups

Table 2: Comparison of ligand-based models, each with initial number of N_{gen} = 10,000 molecules

	A STATE OF THE STA							
Stage /Model	GCPG	GENTRL	MolFinder	PGMG	REINVENT4 (V)	REINVENT4 (P)	REINVENT4 (TL)	OVERALL PASS, %
Descriptors	6616	<u>5669</u>	1592	195	4089	936	1204	20,301 / 70,000 = 29.0014
Structural Filters	4168	<u> 1925</u>	366	37	1325	593	413	8,827 / 70,000 = 12.61
Synthesis Feasibility	1064	303	265	22	<u>918</u>	222	276	3,070 / 70,000 = 4.3857
Docking & Binding Aff.	648	238	200	19	<u>518</u>	72	164	1,859 / 70,000 = 2.6557
Med.Chem. Evaluation	110	24	7	4	<u>93</u>	17	32	287 / 70,000 = 0.41
Pass	110	24	7	4	93	17	32	

Table 3: Comparison of protein-based models, each with initial number of N_{gen} = 10,000 molecules

Stage /Model	DIFFSBDD	Dragonfly	DRAGONFLY (B)	DrugFlow	POCKET2MOL	PROTOBIND-DIFF	ResGen	TARGETDIFF	OVERALL PASS, %
Descriptors	<u>3665</u>	2779	1022	5464	2657	1466	1080	3444	21,577 / 80,000 = 26.9713
Structural Filters	197	1459	218	<u>1392</u>	682	195	255	136	4,534 / 80,000 = 5.6675
Synthesis Feasibility	24	1207	38	<u>453</u>	137	102	62	4	2,027 / 80,000 = 2.5338
Docking & Binding Aff.	13	575	15	<u>344</u>	69	66	37	0	1,119 / 80,000 = 1.3988
Med.Chem. Evaluation	0	227	4	<u>62</u>	12	7	6	0	318 / 80,000 = 0.3975
Pass	0	227	4	62	12	7	6	0	

12 models and 15 model setups

Table 2: Comparison of ligand-based models, each with initial number of N_{gen} = 10,000 molecules

Stage /Model GCPG	GENTRL	MolFinder	PGMG	REINVENT4 (V)	REINVENT4 (P)	REINVENT4 (TL)	OVERALL PASS, %
Descriptors 6616	5669	1592	195	4089	936	1204	20,301 / 70,000 = 29.0014
Structural Filters 4168	<u>1925</u>	366	37	1325	593	413	8,827 / 70,000 = 12.61
nthesis Feasibility 1064	303	265	22	<u>918</u>	222	276	3,070 / 70,000 = 4.3857
ng & Binding Aff. 648	238	200	19	<u>518</u>	72	164	1,859 / 70,000 = 2.6557
Chem. Evaluation 110	24	7	4	<u>93</u>	17	32	287 / 70,000 = 0.41
Pass 110	24	7	4	93	17	32	
nthesis Feasibility ng & Binding Aff. Chem. Evaluation 1064 648 110	303 238 24	265	22	$\frac{918}{518}$ $\underline{93}$		276 164 32	

Table 3: Comparison of protein-based models, each with initial number of N_{gen} = 10,000 molecules

Stage /Model	DIFFSBDD	DRAGONFLY	Dragonfly (b)	DrugFlow	POCKET2MOL	PROTOBIND-DIFF	RESGEN	TARGETDIFF	OVERALL PASS, %
Descriptors	<u>3665</u>	2779	1022	5464	2657	1466	1080	3444	21,577 / 80,000 = 26.9713
Structural Filters	197	1459	218	<u>1392</u>	682	195	255	136	4,534 / 80,000 = 5.6675
Synthesis Feasibility	24	1207	38	<u>453</u>	137	102	62	4	2,027 / 80,000 = 2.5338
Docking & Binding Aff.	13	575	15	<u>344</u>	69	66	37	0	1.119 / 80.000 = 1.3988
Med.Chem. Evaluation	0	227	4	<u>62</u>	12	7	6	0	318 / 80,000 = 0.3975
Pass	0	227	4	62	12	7	6	0	

12 models and 15 model setups

Table 2: Comparison of ligand-based models, each with initial number of $N_{\text{gen}} = 10,000$ molecules

	The state of the s						
Stage /Model	GCPG	GENTRL	MolFinder	PGMG	REINVENT4 (V)	REINVENT4 (P)	REINVENT4 (TL)
Descriptors	6616	<u>5669</u>	1592	195	4089	936	1204
Structural Filters	4168	<u> 1925</u>	366	37	1325	593	413
Synthesis Feasibility	1064	303	265	22	<u>918</u>	222	276
Docking & Binding Aff.	648	238	200	19	<u>518</u>	72	164
Med.Chem. Evaluation	110	24	7	4	93	17	32
Pass	110	24	7	4	93	17	32

consensus score = 0.830

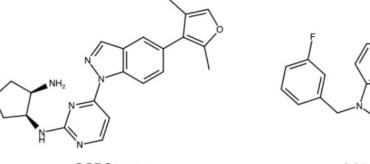


Table 3: Comparison of protein-based models, each with initial number of $N_{\text{gen}} = 10,000$ molecules

			por distance distance of						
	Stage /Model	DIFFSBDD	Dragonfly	Dragonfly (b)	DrugFlow	POCKET2MOL	PROTOBIND-DIFF	ResGen	TARGETDIFF
	Descriptors	<u>3665</u>	2779	1022	5464	2657	1466	1080	3444
	Structural Filters	197	1459	218	<u>1392</u>	682	195	255	136
S_{i}	ynthesis Feasibility	24	1207	38	<u>453</u>	137	102	62	4
Dock	ing & Binding Aff.	13	575	15	344	69	66	37	0
Med	d.Chem. Evaluation	0	227	4	62	12	7	6	0
	Pass	0	227	4	62	12	7	6	0

rugFlow.₀₃₀₆₃ onsensus score = 0.722

DrugFlow-08439 consensus score = 0.716

consensus score = 0.715

12 models and 15 model setups

Table 2: Comparison of ligand-based models, each with initial number of $N_{gen} = 10,000$ molecules

Stage /Model	GCPG	GENTRL	MolFinder	PGMG	REINVENT4 (V)	REINVENT4 (P)	REINVENT4 (TL)
Descriptors	6616	<u>5669</u>	1592	195	4089	936	1204
Structural Filters	4168	<u> 1925</u>	366	37	1325	593	413
Synthesis Feasibility	1064	303	265	22	<u>918</u>	222	276
Docking & Binding Aff.	648	238	200	19	<u>518</u>	72	164
Med.Chem. Evaluation	110	24	7	4	93	17	32
Pass	110	24	7	4	93	17	32

Table 3: Comparison of protein-based models, each with initial number of N_{gen} = 10,000 molecules

				(1)				
Stage /Model	DIFFSBDD	Dragonfly	DRAGONFLY (B)	DRUGFLOW	POCKET2MOL	PROTOBIND-DIFF	RESGEN	TARGETDIFF
Descriptors	3665	2779	1022	5464	2657	1466	1080	3444
Structural Filters	197	1459	. 218	<u>1392</u>	682	195	255	136
Synthesis Feasibility	24	1207	38	<u>453</u>	137	102	62	4
Docking & Binding Aff.	13	575	15	<u>344</u>	69	66	37	0
Med.Chem. Evaluation	0	227	4	<u>62</u>	12	7	6	0
Pass	0	227	4	62	12	7	6	0
		The same of the sa		Y P.				

Small number of left molecules does not highlight overall poor performance. DrugFlow¹ molecules are 4th, 5th and 6th top molecules according to consensus score

¹Arne Schneuing, Ilia Igashov, Adrian W Dobbelstein, Thomas Castiglione, Michael Bronstein, and Bruno Correia. Multi-domain distribution learning for de novo drug design. arXiv preprint arXiv:2508.17815, 2025.

INTRODUCTION

FIVE-STAGE FILTERING PIPELINE

RESULTS

CONCLUSION& DISCUSSION

Conclusion and Discussion

- Standard generative benchmarks are not good proxies for real-world performance; optimizing for validity, synthesis or pocket fidelity independently is insufficient for actionable chemical space
- **Rigorous filtration** is essential for improving success rates and reducing costs by collecting and proceeding those molecules that meet chemical, medicinal, and task-dependent criteria
- Our *Five-Stage Filtering Pipeline* prioritizes **stress-testing** molecular generators against constraints that matter in early drug discovery
- Under our *Five-Stage Filtering Pipeline*, only a small fraction (less that 1%) of generated molecules pass all filters and remain applicable for future work

Research Team

https://ligandpro.ru/en

Skolkovo Institute of Science and Technology

Shamil Kadyrov

Oleg Tinkov

Sergei Nikolenko

Marina Pak

Aleksander Shapeev

Daria Ryabchenko

Daria Frolova

Pavel Gurevich

References

Yongbeom Kwon and Juyong Lee. Molfinder: an evolutionary algorithm for the global optimization of molecular properties and the extensive exploration of chemical space using smiles. *Journal of cheminformatics*, 13(1):24, 2021.

Alex Zhavoronkov, Yan A Ivanenkov, Alex Aliper, Mark S Veselov, Vladimir A Aladinskiy, Anas- tasiya V Aladinskaya, Victor A Terentiev, Daniil A Polykovskiy, Maksim D Kuznetsov, Arip Asadulaev, et al. Deep learning enables rapid identification of potent ddr1 kinase inhibitors. *Na- ture biotechnology*, 37(9):1038–1040, 2019.

Yurong Zou, Tao Guo, Zhiyuan Fu, Zhongning Guo, Weichen Bo, Dengjie Yan, Qiantao Wang, Jun Zeng, Dingguo Xu, Taijin Wang, et al. A structure-based framework for selective inhibitor design and optimization. *Communications Biology*, 8(1):422, 2025.

Huimin Zhu, Renyi Zhou, Dongsheng Cao, Jing Tang, and Min Li. A pharmacophore-guided deep learning approach for bioactive molecular generation. *Nature Communications*, 14(1):6234, 2023.

Hannes H Loeffler, Jiazhen He, Alessandro Tibo, Jon Paul Janet, Alexey Voronov, Lewis H Mervin, and Ola Engkvist. Reinvent 4: modern ai–driven generative molecule design. *Journal of Chem- informatics*, 16(1):20, 2024.

Kenneth Atz, Leandro Cotos, Clemens Isert, Maria Ha°kansson, Dorota Focht, Mattis Hilleke, David F Nippa, Michael Iff, Jann Ledergerber, Carl CG Schiebroek, et al. Prospective de novo drug design with deep interactome learning. *Nature Communications*, 15(1):3408, 2024.

References

Xingang Peng, Shitong Luo, Jiaqi Guan, Qi Xie, Jian Peng, and Jianzhu Ma. Pocket2mol: Effi- cient molecular sampling based on 3d protein pockets. In *International Conference on Machine Learning*, pp. 17644–17655. PMLR, 2022.

Odin Zhang, Jintu Zhang, Jieyu Jin, Xujun Zhang, RenLing Hu, Chao Shen, Hanqun Cao, Hongyan Du, Yu Kang, Yafeng Deng, et al. Resgen is a pocket-aware 3d molecular generation model based on parallel multiscale modelling. *Nature Machine Intelligence*, 5(9):1020–1030, 2023.

Arne Schneuing, Charles Harris, Yuanqi Du, Kieran Didi, Arian Jamasb, Ilia Igashov, Weitao Du, Carla Gomes, Tom L Blundell, Pietro Lio, et al. Structure-based drug design with equivariant diffusion models. *Nature Computational Science*, 4(12):899–909, 2024.

Lukia Mistryukova, Vladimir Manuilov, Konstantin Avchaciov, and Peter O Fedichev. Protobind- diff: A structure-free diffusion language model for protein sequence-conditioned ligand design. *bioRxiv*, pp. 2025–06, 2025.

Jiaqi Guan, Wesley Wei Qian, Xingang Peng, Yufeng Su, Jian Peng, and Jianzhu Ma. 3d equiv- ariant diffusion for target-aware molecule generation and affinity prediction. *arXiv* preprint arXiv:2303.03543, 2023.

Arne Schneuing, Ilia Igashov, Adrian W Dobbelstein, Thomas Castiglione, Michael Bronstein, and Bruno Correia. Multi-domain distribution learning for de novo drug design. *arXiv preprint arXiv:2508.17815*, 2025.

References

Xingang Peng, Shitong Luo, Jiaqi Guan, Qi Xie, Jian Peng, and Jianzhu Ma. Pocket2mol: Effi- cient molecular sampling based on 3d protein pockets. In *International Conference on Machine Learning*, pp. 17644–17655. PMLR, 2022.

Odin Zhang, Jintu Zhang, Jieyu Jin, Xujun Zhang, RenLing Hu, Chao Shen, Hanqun Cao, Hongyan Du, Yu Kang, Yafeng Deng, et al. Resgen is a pocket-aware 3d molecular generation model based on parallel multiscale modelling. *Nature Machine Intelligence*, 5(9):1020–1030, 2023.

Arne Schneuing, Charles Harris, Yuanqi Du, Kieran Didi, Arian Jamasb, Ilia Igashov, Weitao Du, Carla Gomes, Tom L Blundell, Pietro Lio, et al. Structure-based drug design with equivariant diffusion models. *Nature Computational Science*, 4(12):899–909, 2024.

Lukia Mistryukova, Vladimir Manuilov, Konstantin Avchaciov, and Peter O Fedichev. Protobind- diff: A structure-free diffusion language model for protein sequence-conditioned ligand design. *bioRxiv*, pp. 2025–06, 2025.

Jiaqi Guan, Wesley Wei Qian, Xingang Peng, Yufeng Su, Jian Peng, and Jianzhu Ma. 3d equiv- ariant diffusion for target-aware molecule generation and affinity prediction. *arXiv* preprint arXiv:2303.03543, 2023.

Arne Schneuing, Ilia Igashov, Adrian W Dobbelstein, Thomas Castiglione, Michael Bronstein, and Bruno Correia. Multi-domain distribution learning for de novo drug design. *arXiv preprint arXiv:2508.17815*, 2025.