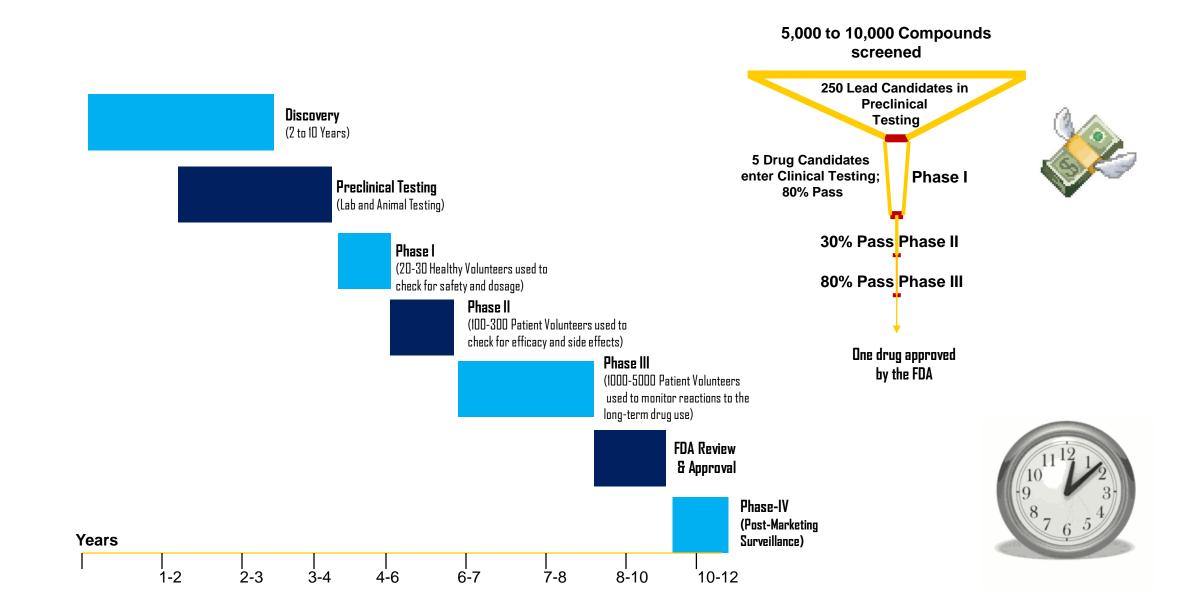
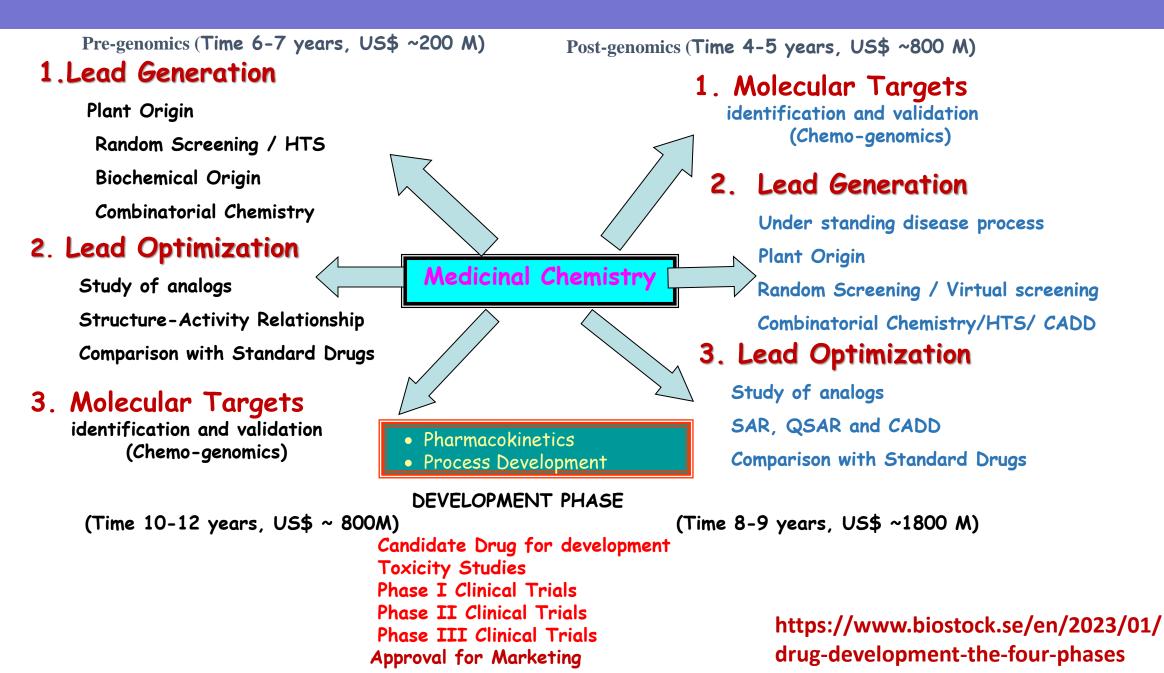


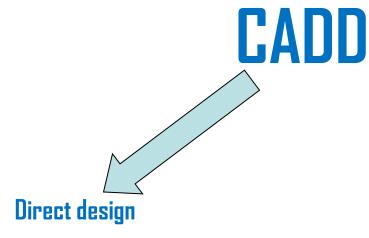
A Novel Drug Design Approach: Quantitative Structure-Interaction Activity Relationship (QSIAR) in Anti-Tubercular Agents


Anil K. Saxena

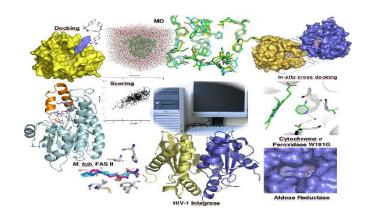
Chairman

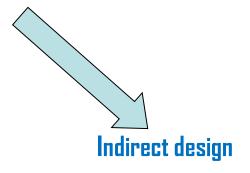

Global Institute of Pharmaceutical Education and Research, Kashipur, US

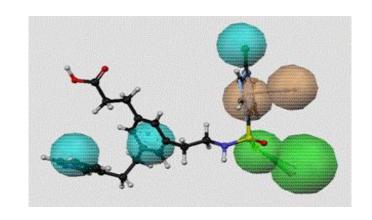
Nagar, Uttarakhand


Overview of the Drug Discovery and Development Process

DRUG DISCOVERY & DEVELOPMENT

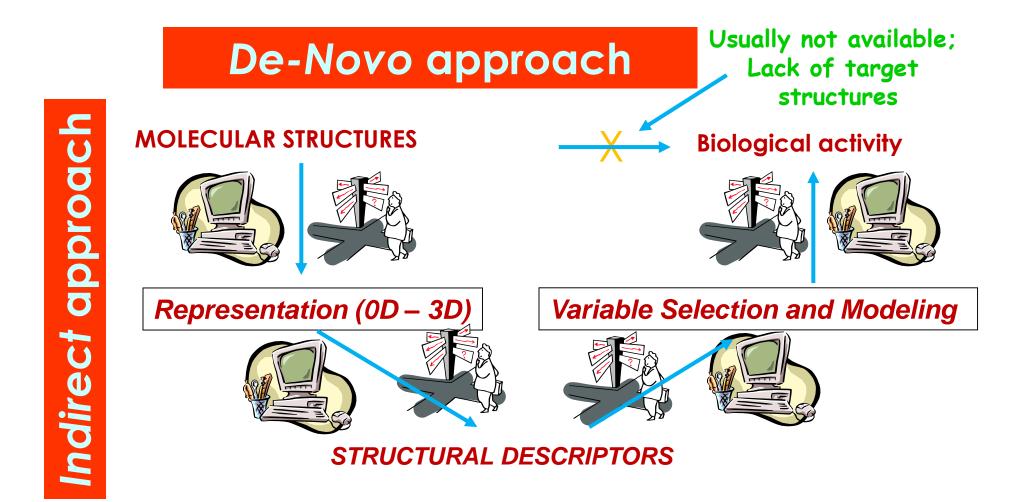



Computer-aided drug design (CADD)

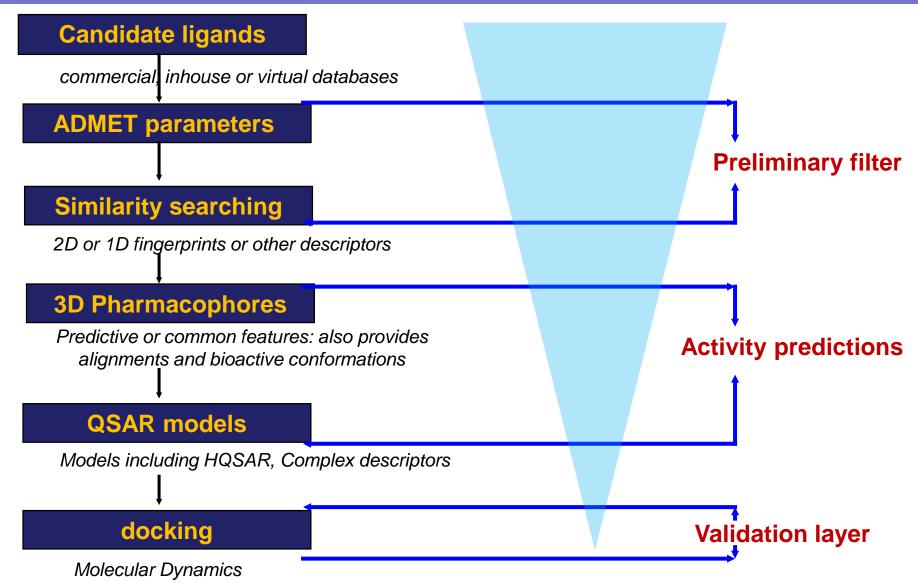

Used where target structure is known (structure-based design)

X-ray, NMR, Homology based 3D structures are used to design novel molecules

Used in cases where target structure is not known Structure activity relationship studies $2D/3D\ QSARs$


A comparison of structure based and ligand-based methods for virtual screening

	Direct design	Indirect design
Requirement	Requires availability of 3D structures of ligand macromolecule complex or target macromolecule (Today less than 10% of drug targets are crystallized, some important targets like membrane proteins and others are still to be crystallized).	Requires ligand structures only.
Implementation/ Complexity	Highly complex and very high computational cost	Less complex and low computational cost. Implementation is relatively simple.
Information	Abstract	Minimum and simple
Predictivity	Requires multiple scoring functions, less predictive	Highly predictive (within the SSS)
Concerns	Pose versus score correlation	Variable selection, consistency with the active site
Reliability	De Novo, more reliable when screening against diverse molecules	As good as the training set, limitations to the diversity of the database to be used.


Virtual screening: Ligand-based approaches

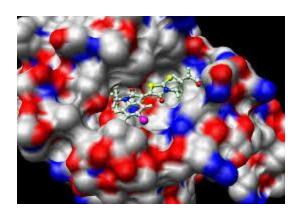
Structure-function relationship

Basic Assumption: Molecular structure determines its property

Virtual screening (VS) paradigm A multi-layer hybrid prediction protocol

Homology models incase of non-availability of high-resolution structures: Manual and automatic

Structure-Based Drug Design (SBDD)

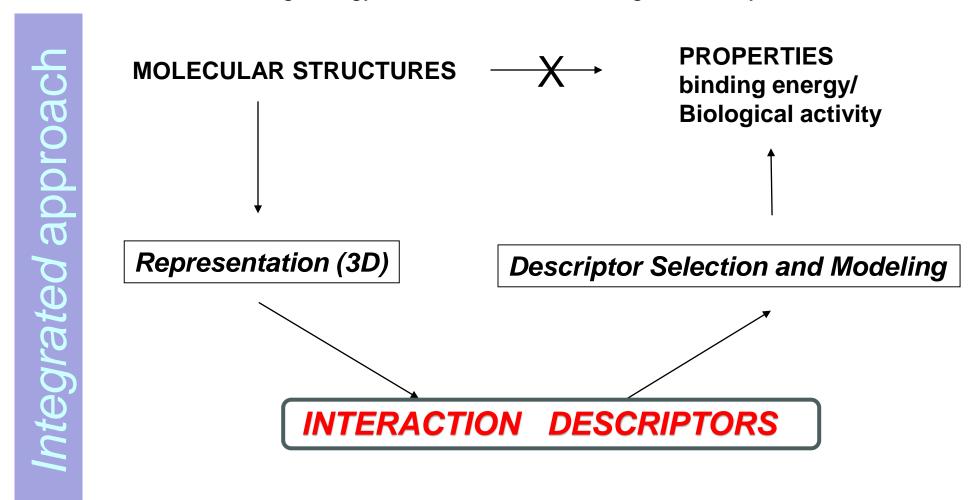

Structure-Based Drug Design (SBDD) uses the 3D structure of biological targets (usually proteins) to design molecules that bind specifically and modulate their activity.

Key Steps

- 1. Target Identification & Structure Determination Obtain 3D structure using X-ray crystallography, NMR, or Cryo-EM.
- **2. Binding Site Analysis** Identify active or allosteric sites for ligand binding.
- 3. Ligand Design / Docking Use computer-aided modeling to design or screen ligands that fit the target site.
- 4. Scoring & Optimization Evaluate binding affinity and optimize structure for potency, and selectivity.

Advantages:

- Rational, faster, and cost-effective drug discovery
- Reduces experimental trial-and-error



Limitation of Structure based approaches in development of predictive models for virtual screening

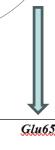
- The major drawback of docking approach in the Structure-based drug design is poor correlation
 of biological activity with docking scores and hence non-availability of reliable predictive
 models for virtual screening.
- It may be due to the major limitation of docking scores to accurately predict binding energies interactions due to factors such as the algorithm's inability to predict interactions like entropy change and solvation effect and sometimes ignorance of useful interactions.
- Complication due to the presence of water molecules in the binding pocket.
- The scoring function limitations incorporated in different docking programs.

Quantitative Structure Interaction Activity Relationship (QSIAR): a novel approach to drug design

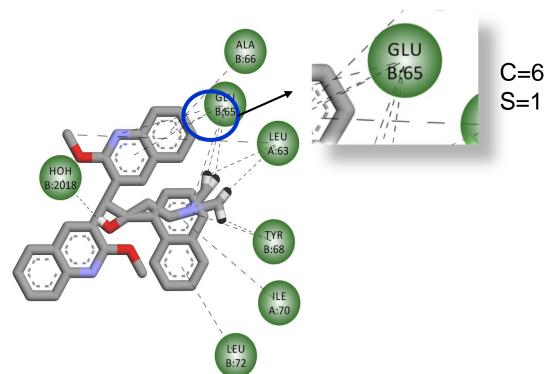
Basic Assumption: Interactions of the molecule at the binding site determines its binding energy which is related to biological activity

Quantitative Structure Interaction Activity Relationship (QSIAR) A novel approach to drug design

A novel approach where the interactions of the ligand molecule with the amino acid residues of the target protein are given weightage and are considered as independent parameters while the binding energy/affinity, docking scores/biological activity as dependent parameter was used in the development of the QSAR model. This QSIAR model(s) are developed using MLR or other statistical/ analysis used in QSAR which also provide the weightage to the interactions in describing the biological response.

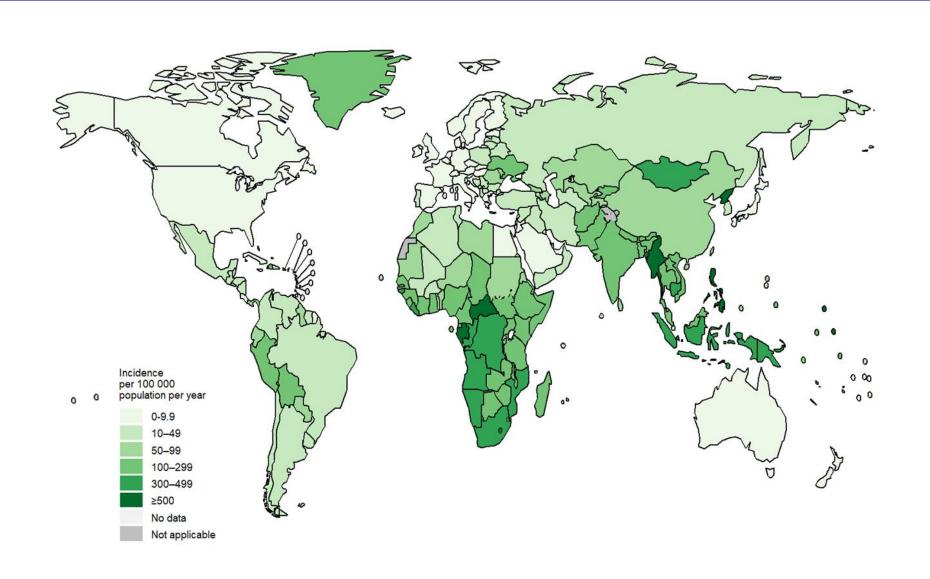

BA= Const.+ a1AR1+ a2AR2+....anARn

BA = binding energy/affinity, docking scores/biological activity


AR= interaction with amino acid residue

Quantitative Structure Interaction Activity Relationship (QSIAR) A novel approach to drug design

Comp. No.	Glu	65k	HO)Hb	Lv26	8b	Alab	66b	Phe	69k	Asp.	32k	Leu	22k	Ue70	k	Val6	<u>1b</u>	Gly6	2b	Phes	Z k	Phe	i&k	Phe	Ak	Lew	63a	Ue7	<u>la</u>	Ala6	6a	Phe	7.4a	Ue5	la	Gly6	52a	Glub	656	Phel	iQC	Leuz	Ze
	S	С	S	С	S	ç	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	C	S	С	S	C	S	С
1	1	3	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	1	2	0	0	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	2	0	0	0	0	1	1	1	2	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	1	1	0	0	0	0	1	2	0	0	0	0	0	0
3	1	4	1	1	0	0	/ 1	1	0	0	0	0	0	0	0	0	1	2	1	1	0	0	1	1	0	0	1	2	0	0	1	1	0	0	1	1	1	1	0	0	0	0	0	0
4	1	4	0	0	1	1/	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0 <	0	1	1	0	0	0	0	0	0


	~					
Comp. No.	Glu	65b	Н	OHb.	Tyr	68b
	S	C	S	C	S	C
1	1	3	1	1	0	0
2	1	2	0	0	0	0
3	1	4	1	1	0	0
4	1	4	0	0	1	1

Emerging challenges in TB treatment

- ☐ *Mycobacterium tuberculosis* is the pathogen responsible for TB which uses diverse strategies to survive in a variety of host injury and to evade immune systems.
- □ A total of 1.25 million people died from TB in 2023 (including 161,000 people with HIV). Worldwide, TB is the second leading infectious killer after COVID-19 (above HIV and AIDS).
- In 2023, an estimated 10.8 million people fell ill with tuberculosis (TB) worldwide, which included 55% men, 33% women and 12% children. TB is present in almost all countries and age groups and is curable.

Global estimated TB incidence

Desired profile for a new TB drug

Desired profile	Characteristics
Treatment of MDR-TB and XDR-TB	 New chemical class with a new mechanism of action or cheaper and better drug than Bedaquiline
Reduction in duration of treatment	 Strongly bactericidal activity Good activity on latent or dormant populations More potent and safer regimens of a novel drug and its combinations
Lowering of dosing frequency	 Good pharmacokinetics including longer half-life and target tissue levels Novel fixed-dose formulations and delivery technologies
Reduction of pills burden	 Combinations of more efficacious drugs to reduce number of pills taken Child-friendly formulation of newer drugs
Drug-drug interactions	 No cytochrome P450 induction liabilities Minimal drug-drug interaction

Current drug and drug targets for TB treatment

FIRST LINE DRUGS

Isoniazid (INH)

Rifampin (RIF)

Pyrazinamide (PZA)

Ethambutol (EMB)

SECOND LINE DRUGS

Para-amino salicylate

Kanamycin

Cycloserine

Ethionamide

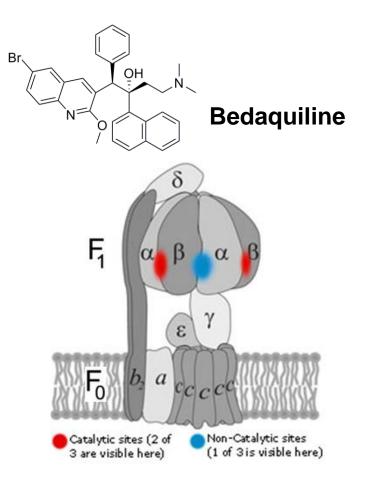
Amikacin

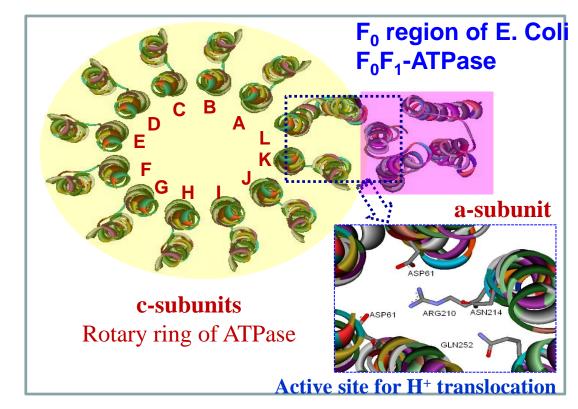
Capreomycin

Thiacetazone

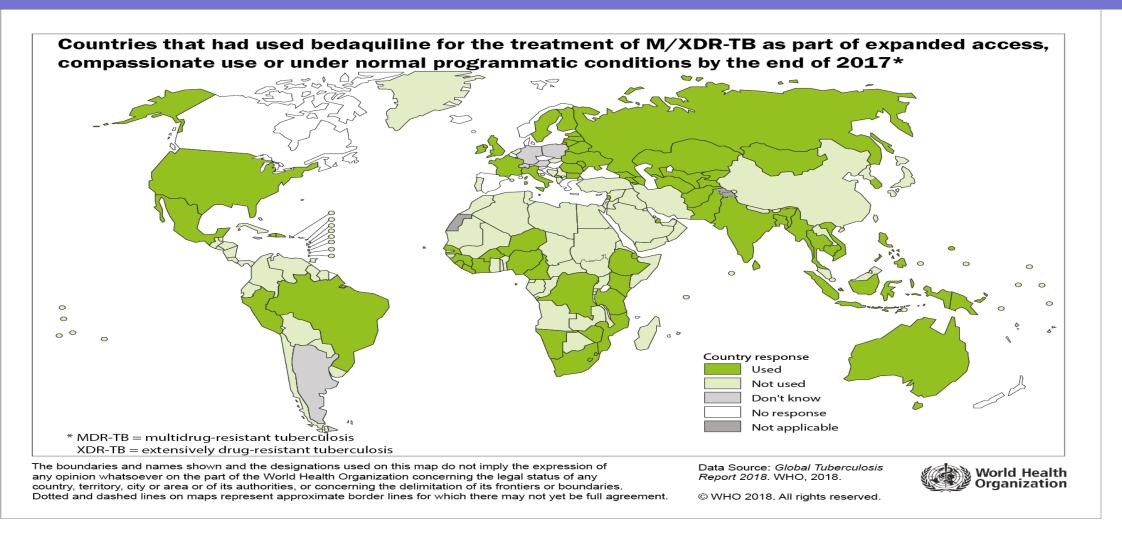
Fluoroquinolones

Rifabutin

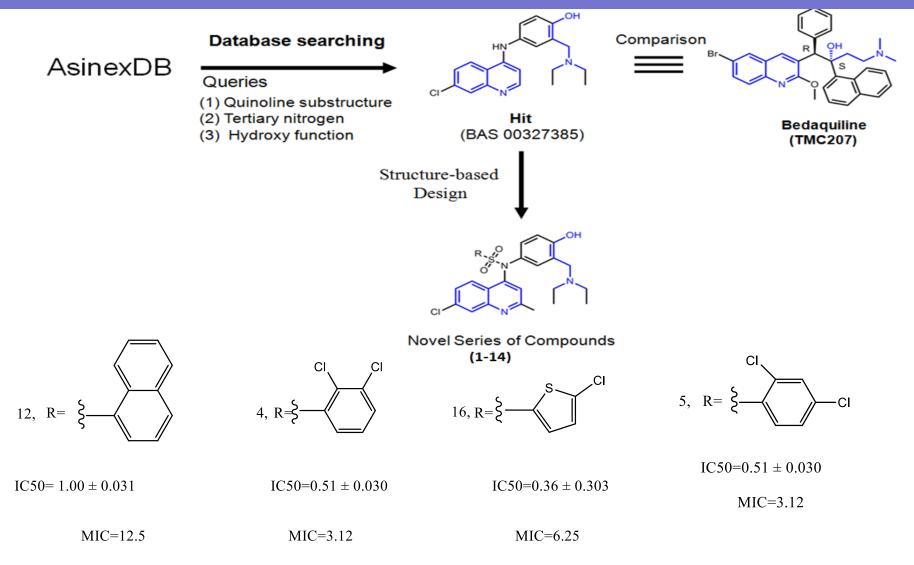

Bedaquiline


D.	
Drugs	Targets
Isoniazid (INH)	Mycolic acid synthesis inhibition
Pyrazinamide (PZA)	Cell membrane Interference
Rifampin	RNA synthesis inhibition
Ethambutol (EMB)	Arabinogalactan biosynthesis inhibition
Streptomycin	RNA and protein synthesis inhibition
Kanamycin and Capreomycin	Inhibition of protein synthesis through modification of ribosomal structures at the 16S rRNA
Cycloserine	Peptidoglycan synthesis inhibition
Thiolactomycin	β-keto ACP synthase inhibitor
Cerulenin	Fatty acid synthase (FAS) inhibitor
Bedaquiline	M.Tb ATP Synthase
Delamanid	inhibits mycolic acid synthesis
Pretomanid	inhibits cell wall biosynthesis

A.K. Saxena et.al, CURR TOP MED CHEM., 2019, 19, 1-19


Mycobacterium F₀F₁-ATPase

F-type ATPases have a lipophilic intramembrane portion (F_0) and a more polar ATP-binding region (F_1) that extends into the cytoplasm. For the functioning of the enzyme, the **a-** and **c-subunits** move relative to each other on a contact area that spans the membrane



Bedaquiline: Clinical use worldwide

However, some reports of resistance threaten its effectiveness in MDR-TB control programs worldwide.

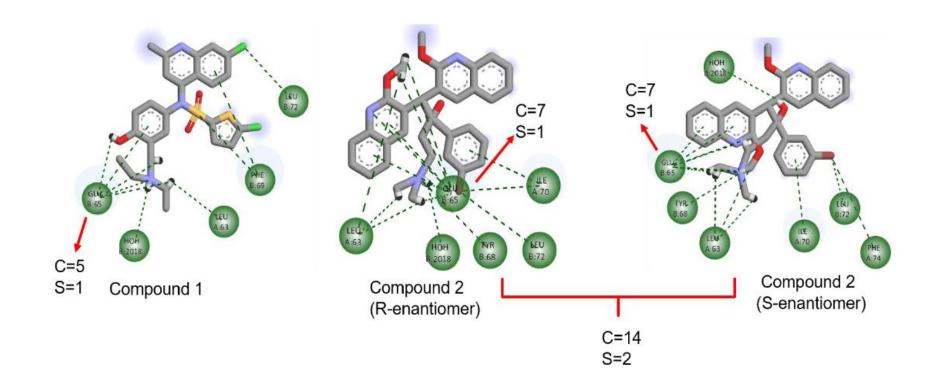
Novel potent orally bio available and selective Mtb ATP synthase inhibitors

A case study on mycobacterium ATP synthase inhibitors as anti-tubercular agents

Quantitative structure-activity relationship (QSAR) studies were conducted to analyze physicochemical factors influencing antitubercular activity against mycobacterium ATPase comprising of **4-substituted amino sulphonyl-2-methyl-7-chloroquinolines and bis-quinoline core** (Table 1).

Table 1

1-16


17-25

Comp. No.	Cor	npound structure	pIC50 (μM)	Comp. No		ound structure	pIC50 (μM)
	R_1	R_2			R_{I}	R_2	
1	CI	-	0.275			-	0
2	NC NC	-	0.13	12			
3	O_2N	-	0.408			-	0.036
1	CI CI	-	0.292	13			
r			0.2			-	-0.267
5	CI	-	0.2	14	N		
5	CI	-	-0.127	15	S	-	-0.195
	CI			16	CI	-	0.443
7	CI	-	-0.1		- Andrew		
3			-0.133	17 (RS)	Me	Phenyl	1.154
•	F_3C	-	-0.133	18 (RS)	Me	3-bromophenyl	1.301
	\	-	-0.262	19 (RS)	CH_2 - CH = CH_2	Phenyl	1.397
)				20 (RS)	CH ₂ -CH=CH ₂	3-bromophenyl	1.522
	*			21 (RS)	CH ₂ -CH=CH ₂	4-bromophenyl	0.522
.0	/ 	-	-0.017	22 (RS)	CH_2 - CH_2 - $CH = CH_2$	4-bromophenyl	1.096
O .				23 (RS)	Me	2-naphthyl	1.522
	`\	-	-0.517	24 (RS)	Me	4-bromophenyl	2
				25 (RS)	Me	3-bromophenyl	3
11				23 (KS)	IVIC	1. Bioorg. Med.	

1. Bioorg. Med. Chem. 23 (2015), pp. 742-752 2. Med. Chem. Commun. 6 (2015), pp. 1554-1563

Quantitative Structure Interaction Activity Relationship (QSIAR) methodology

Comp. No.	R/S	Activity	Glu65b	НОНЪ	Tyr68b	Ala66b	Phe69b	Asp32b	Leu 72b	Пе70b	Val61b	Gly62b	Phe57b	Phe58b	Phe74b	Leu63a	Ile70a	Ala66a	Phe74a	Ile59a	Gly62a	Glu65c	Phe69c	Leu72c	Docking score
01	-	0.443	5	1	0	0	2	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	-4.767
02	R	1.301	7	1	1	0	0	0	1	0	0	0	0	0	0	3	2	0	0	0	0	0	0	0	-6.778
	S	1.301	7	1	1	0	0	0	1	0	0	0	0	0	0	3	1	0	1	0	0	0	0	0	-7.332

Saxena, A. K. (2024, March). In GTHTM (pp. 1-20). Cham: Springer Nature Switzerland.

The single 'S' and the combined 'C' interaction parameters for the compounds

1-25 used in the QSAR analysis

Com	GI	u65	HO	Hb	Tyr	68	Ala	a66	Ph	e69	As	p32	Le	u72	Ph	e58	Va	I61	lle	70b	Ph	e57	Ph	e74	GI	y62	lle	70a	lle	59a	GI	y62	Le	u63	Ph	e74	Ala	a66	Le	u72	Ph	1e69	GI	u65
p.	b				b		b		b		b			b	b		b				b		b		b						а		а		а		а		С		С		С	
No.																																												
	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С	S	С
1	1	3	1	1	0	0	0	0	0	0	0	0	0	0	1	2	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	2	0	0	0	0	0	0	0	0	0	0
2	1	2	0	0	0	0	1	1	1	2	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	2	0	0	1	2	0	0	0	0	1	1	0	0	0	0	0	0
3	1	4	1	1	0	0	1	1	0	0	0	0	0	0	1	1	1	2	0	0	0	0	0	0	1	1	0	0	1	1	1	1	1	2	0	0	1	1	0	0	0	0	0	0
4	1	4	0	0	1	1	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0
5	1	5	1	2	0	0	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
6	1	3	1	1	1	1	1	1	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1	1	1	2	0	0	1	1	0	0	0	0	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0
8	1	2	0	0	0	0	0	0	1	1	0	0	1	1	1	1	1	2	0	0	1	1	0	0	0	0	0	0	0	0	1	1	1	3	0	0	0	0	0	0	0	0	0	0
9	1	3	0	0	1	1	0	0	1	1	0	0	0	0	1	2	1	2	0	0	1	1	0	0	0	0	0	0	1	1	1	1	1	2	0	0	1	1	0	0	0	0	0	0
10	1	4	0	0	0	0	1	1	1	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	2	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	4	1	2
12	1	4	1	1	0	0	1	2	1	2	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
13	1	2	0	0	0	0	1	1	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
14	1	2	1	1	0	0	1	1	0	0	0	0	0	0	1	1	1	2	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
15	1	3	0	0	0	0	1	1	1	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16	1	5	1	1	0	0	0	0	1	2	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
17	2	10	1	2	2	2	2	2	0	0	1	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	2	4	0	0	0	0	0	0	0	0	0	0
18	2	14	2	2	2	2	0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	2	3	0	0	0	0	2	6	1	1	0	0	0	0	0	0	0	0
19	2	11	1	2	2	2	0	0	1	1	1	1	1	1	0	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	2	5	0	0	0	0	0	0	0	0	0	0
20	2	11	2	2	2	4	1	1	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	0	0	0	0	2	5	0	0	0	0	0	0	0	0	0	0
21	2	9	1	2	2	4	2	2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	2	0	0	0	0	2	5	0	0	1	1	0	0	0	0	0	0
22		9	1	1	2	2	1	2	1	4	1	1	2	2	0	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0	0	2	5	0	0	0	0	0	0	0	0	0	0
23		10	2	3	2	2	2	2	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	5	0	0	0	0	0	0	0	0	0	0
24	2	10	2	2	2	3	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	3	0	0	0	0	2	5	0	0	0	0	0	0	0	0	0	0
25	2	10	2	2	1	2	1	1	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	1	2	4	0	0	0	1	0	0	0	0	0	0

QSIAR model development on the dataset

 $plC_{50} = -0.847 + 0.882(\pm 0.8577)Glu65b + 0.432(\pm 0.3774) + HOHb - 0.316(\pm 0.3174) + Phe69b - 1.17(\pm 0.9920) Gly62b + 0.044(\pm 0.1898) Ala66b - 0.223(\pm 0.4260) Val61b + 0.117(\pm 0.3556) Leu72b - 0.287(\pm 0.2976) Tyr68b - 0.059(\pm 0.8266) Asp32b - 0.083(\pm 0.4658) Phe58b + 0.286(\pm 0.7943) He74b - 0.467(\pm 0.4381) Phe57b - 0.750(\pm 0.4875) Ala66a - 1.25(\pm 1.135) Phe74a + 0.285(\pm 0.2891) He70a + 0.270(\pm 0.5042) Leu63a + 0.575(\pm 0.4052) Gly62a + 1.28(\pm 0.9337) He59a$

plC₅₀ = - 0.881 + 0.659(±0.1999) Glu65b + 0.595(±0.1738) HOHb - 0.468(±0.2444) Ala66a + 0.569(±0.2083) Gly62a

 $plC_{50} = -0.428 + 0.161(\pm 0.01582)$ Glu65b(Eq. 1)

N=24; $R^2=82.5\%$; R^2 (adj)=81.7%; S=0.301; R-Sq(pred)=77.71%

The Eq.1 was also validated with an external dataset which displayed a high correlation (R=0.8518) between the pIC50 and pIC90 values.

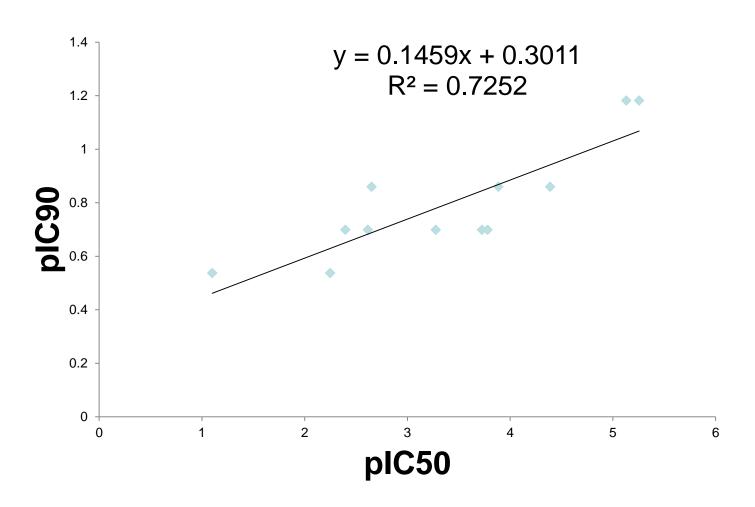

Validation of the developed model

Table 2: Compounds of the external dataset (Future med. Chem., 2011, 3, 1345-1360) with their activity

$$R_4$$
 R_4
 R_3
 R_3
 R_3

Comp. No.			Compound stru	ucture		pIC ₉₀
	n	R ₁	R_2	R_3	R ₄	(µM)
1	2	N(Me) ₂	-	Phenyl	Br	3.2757
2	4	N(Me) ₂	-	Phenyl	Br	2.6161
3	1	NHMe	-	Phenyl	Br	4.389
4	1	Morpholinyl	-	Phenyl	Br	2.3968
5	1	Imidazolyl	=	Phenyl	Br	2.2479
6	1	N(Me) ₂	3-CI	Phenyl	Br	5.1302
7	1	N(Me) ₂	4-CI	Phenyl	Br	3.7798
8	1	N(Me) ₂	-	p- cyanophenyl	Br	3.7258
9	1	N(Me) ₂	-	2,5- difluorophenyl	Br	5.256
10	1	N(Me) ₂	-	Phenyl	Br	2.652
11	1	N(Me) ₂	-	Phenyl	6-Cl	3.886
12	1	N(Me) ₂	-	Phenyl	6-NMepiperazinyl	1.1001

Validation of the developed model

The Eq.1 was also validated with an external dataset which displayed a high correlation (R=0.8518) between the pIC50 and pIC90 values.

ATP synthase inhibitory activity of a dataset comprising of diverse set of compounds with imidazo[1,2-a] pyridine ethers and squaramides nucleus

Table 4

R_z	R ₂	R;	Observed activity in pIC50 (gM)
Н	~~°O	Н	0.886
	~~°O	H	1.522
Н	~~° C _F	Н	1.097
Cl	~~° ₩	Н	1.398
	~~° C⟩ _F		1.301
CH ₃	~~° ₩	F	1.699
Cl	~~\ _\	H	-1.557
H	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	-1.276
Н	~~°~	Н	-0.748
CH ₃	~~°C"	F	0.796
CH ₃	~~~°F	F	1.222
CH ₃	~~~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F	1.046
	~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Н	-0.806
CH ₃	~~\ ^{\\\} _ _F	F	2.301
CH ₃	~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F	1.222
	H CH ₃ H CI CH ₃	H	H

16	CH ₃		F	1.301
17*	CH ₃	z	F	1.097
18*	CH ₃		F	0.678
19	CH ₃	H _N SO ₂	F	0.155
20°	CH ₃	~~\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F	1.155
21	CH ₃	⟨\`\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	F	0.398
22*	CH ₃	~~N ¹ ←	F	-0.857
23	CF ₃		,	0.523
24	CF ₃	\(\n^{\n}\)	1	-0.924
25*	CN		,	-1.823
26	YN 3		,	1.523
27	YN S	\(\big _N^\)	1	0.113
28*	√ N →		-	-0.978

J. Med. Chem. 60 (2017), pp. 1379-1399

QSIAR model development on the dataset (imidazo[1,2-a] pyridine ethers and squaramides nucleus)

```
pIC_{50} = -0.361 + 0.813(\pm 0.167) \; Glu65b - 0.727(\pm 0.220) \; HOHb - 0.508(\pm 0.421) \; Tyr68b + 0.562(\pm 0.160) \; Ala66b - 0.548(\pm 0.157) \; Phe69b - 0.068(\pm 0.293) \; Leu72b + 0.734(\pm 0.568) \; Ile70b - 0.308(\pm 0.222) \; Val61b + 0.271(\pm 0.204) \; Gly62b - 0.437(\pm 0.570) \; Phe57b + 0.234(\pm 0.327) \; Phe58b + 0.245(\pm 0.149) \; Leu63a - 0.439(\pm 0.246) \; Ile70a + 0.070(\pm 0.157) \; Ala66a + 0.141(\pm 0.629) \; Gly62a
```

$$pIC_{50}$$
= -0.763 + 0.964(±0.112) Glu65b - 0.304(±0.154) HOHb + 0.437(±0.118) Ala66b - 0.334(±0.111) Phe69b

 pIC_{50} =-0.845 + 1.094(±0.137) Glu65b(Eq.2) n=28, r²=71.00%, r-Sq(adj)=69.88%, F=63.65, S=0.615, R-Sq(pred)= 67.75%

Equation 2 is similar to equation 1 in terms of the positively correlating parameter Glu65b as the independent variable emphasizing the dependence of activity on this interaction which alone was capable to predict the activities.

QSAR model development on the combined dataset of 4-substituted amino sulphonyl-2-methyl-7-chloroquinolines, bis-quinoline core, imidazo[1,2-a] pyridine ethers and squaramides nucleus

```
 pIC_{50} = 0.396 + 0.3348(\pm 0.0736) \quad Glu65b - 0.931(\pm 0.176) \quad HOHb - 0.385(\pm 0.189) \quad Tyr68b + 0.377(\pm 0.129) \quad Ala66b - 0.507(\pm 0.132) \quad Phe69b - 0.861(\pm 0.530) \quad Asp32b - 0.004(\pm 0.241) \quad Leu72b - 0.645(\pm 0.354) \quad Ile74b - 0.458(\pm 0.200) \quad Val61b + 0.135(\pm 0.205) \quad Gly62b - 0.203(\pm 0.373) \quad Phe57b + 0.158(\pm 0.242) \quad Phe58b + 0.310(\pm 0.140) \quad Leu63a - 0.069(\pm 0.188) \quad Ile70a + 0.255(\pm 0.166) \quad Ala66a - 2.800(\pm 0.931) \quad Phe74a + 0.228(\pm 0.417) \quad Ile59a - 0.550(\pm 0.229) \quad Gly62a + 0.446(\pm 0.694) \quad Ile70b
```

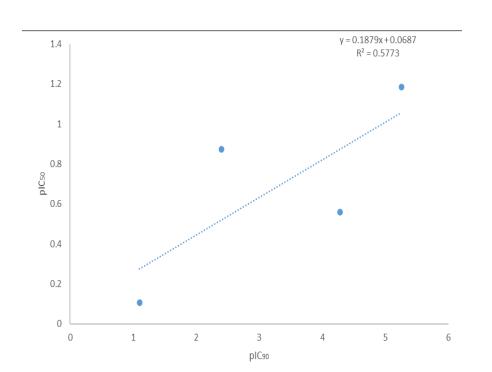
 $pIC_{50} = 0.165 + 0.2352(\pm 0.0365) \text{ Glu65b} - 0.610(\pm 0.153) \text{ HOHb} + 0.307(\pm 0.128) \text{ Ala66b} - 0.3359(\pm 0.0986) \text{ Phe69b} \\ n = 52, R^2 = 50.83\%, R - Sq(adj) = 46.65\%, F = 12.15, S = 0.688, R - Sq(pred) = 39.63\%$

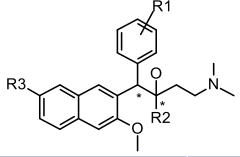
 $pIC_{50} = 0.319 + 0.3080(\pm 0.0393)$ Glu65b - $0.649(\pm 0.138)$ HOHb + $0.230(\pm 0.118)$ Ala66b - $0.2371(\pm 0.0936)$ Phe69b - $0.800(\pm 0.234)$ I ...(Eq.3) [Indicator variable]

n=52, $R^2=60.80\%$, R-Sq(adj)=56.54%, F=14.27, S=0.621, R-Sq(pred)=48.13%

QSAR model development on the combined dataset of 4-substituted amino sulphonyl-2-methyl-7-chloroquinolines, bis-quinoline core, imidazo[1,2-a] pyridine ethers and squaramides nucleus

The dataset of 52 molecules was divided equally into training and test set.

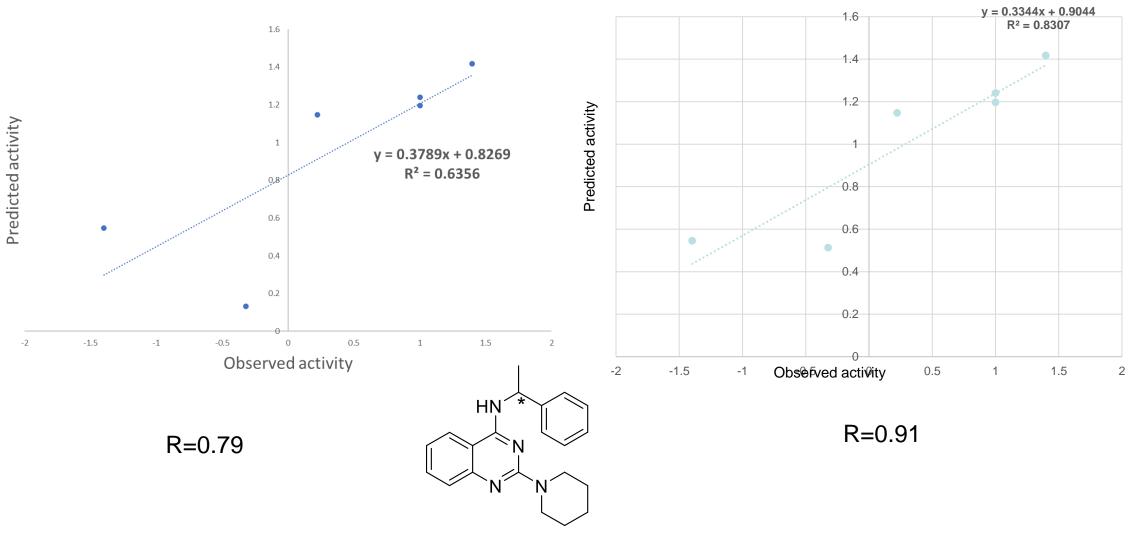

Criteria: All the 52 molecules were first arranged in decreasing order of activity and divided two sets (training set (27 molecules) included the most and the least active molecules along with every alternate molecule while the test set (25 molecules) included the rest of the molecules.


 $pIC50=0.259 + 0.3802(\pm 0.0655)$ $Glu65b - 0.793(\pm 0.191)$ $HOHb + 0.287(\pm 0.176)$ $Ala66b - 0.353(\pm 0.125)$ $Phe69b - 0.870(\pm 0.348)$ I (Eq.4)

n=27, R²=67.74%, R-Sq(adj)=60.06%, F=8.82, S=0.647, R-Sq(pred)=48.60%

Validation of the developed model by dataset-1

The model (Eq. 4) was validated by an external dataset (diarylquinolines) (Future med. Chem., 2011, 3, 1345-1360). Four compounds comprising of the most, the least and two more compounds with in between activity were taken for the validation of the model. A correlation analysis showing a a good correlation ($\mathbf{R}=\mathbf{0.76}$) between the predicted pl \mathbf{C}_{50} values and the pl \mathbf{C}_{90} further validates this model and points towards its robustness.

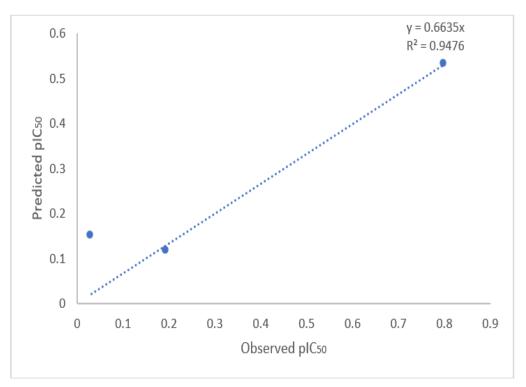


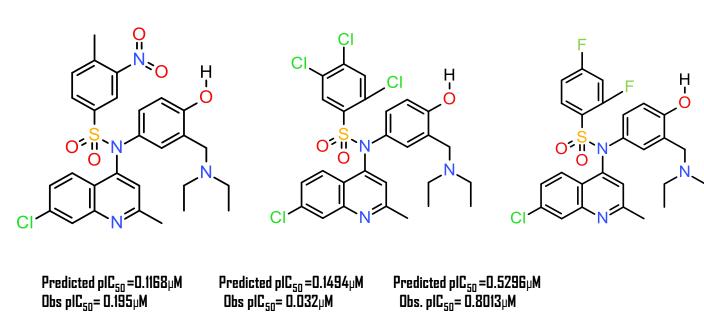
Com		Compound s	tructure		Pred.
p. No.	R ₁	R_2	R_3	Obs. pIC ₉₀ (µM)	plC ₅₀ (μM)
1	-	Phenyl	Br	2.398	0.8738
2	3,4-diCl	Phenyl	Br	4.282	0.5596
3	-	2,5- difluorophenyl	Br	5.256	1.186
4	-	Phenyl	6- NMepiperazinyl	1.1001	0.1052

Validation of the developed model by dataset-2

S.No	Structure (MedChemComm 2016, 7(5):1022-1032)	Mycobacterial ATP synthase activity IC ₅₀ (μM)	Mycobacterial ATP synthase activity pIC ₅₀ (µM)	Predicted ATP synthase activity pIC ₅₀ (µM)
1	HN N O	25	-1.39794	0.546
2	HN N	2.1	-0.32222	0.1332
3	HN N	0.6	0.221849	1.1472
4		0.1	1	1.2404
5	F O N CI	0.1	1	1.1968
6	HN CI	0.04	1.39794	1.4178

Validation of the developed model by dataset-2

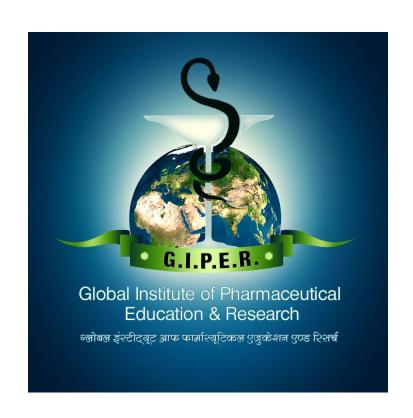



A plot between the observed and predicted values of the external dataset-2.

Generation of the focussed library and prediction of selected molecules for validation

Predicted compounds

Prediction and Evaluation of the selected novel compounds



Conclusions

- ❖ The docking scores always do not correlate with the biological activity.
- ❖ To address this issue, a novel approach (Quantitative Structure Interaction Activity Relationship-QSIAR) has been developed where the observed interactions of the ligand molecule with the amino acid residues of the target protein were used as an independent parameters and the binding energy/affinity, docking scores/biological activity as dependent parameter.
- ❖ This approach was used to develop predictive models for Mycobacterium ATP synthase inhibitory activity in diverse class of 4-substituted amino sulphonyl-2-methyl-7chloroquinolines, bis-quinoline core, imidazo[1,2-a] pyridine ethers and squaramides nucleus.
- ❖ The developed models were validated on diverse set of compounds and well explained the variation in ATP synthase inhibitory activity.
- The studies led to the design of novel compounds which showed high activity and well correlated with the predicted activity.
- ❖ Thus, the QSIAR approach has a high potential in the development of predictive models using structure-based drug design which was hitherto not possible. Such models may thus result in novel lead molecules for drug design and development.

Acknowledgements

Dr. Kuldeep Kumar Roy Dr. Supriya Singh Mr. Muneer Alam Mr. Sarfaraz Ahmed

Let's make the World TB Safe!

THANK YOU

