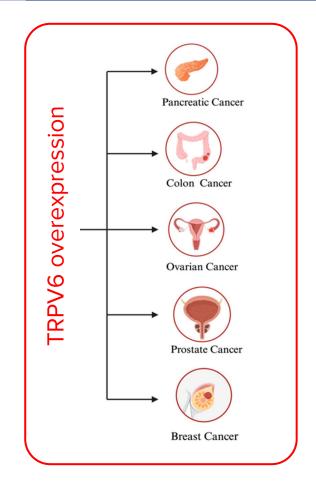
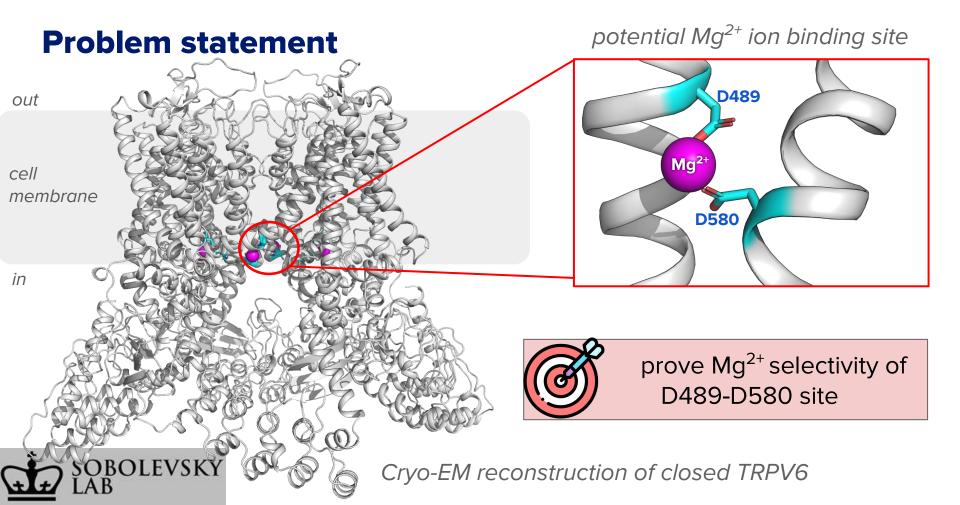

MAGNESIUM BINDING TO TRPV6 ION CHANNEL: INSIGHTS FROM MOLECULAR MODELING

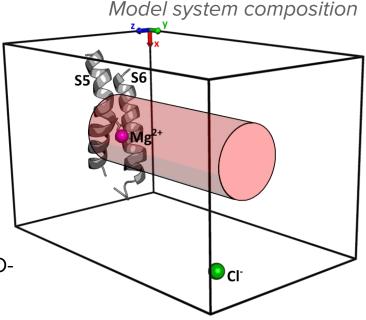

Veretenenko I. I., Trofimov Yu. A., Efremov R. G.

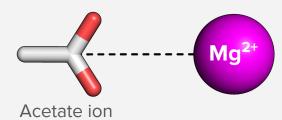
BCADD, 21st October 2025

Introduction > 2


TRPV6 ion channel

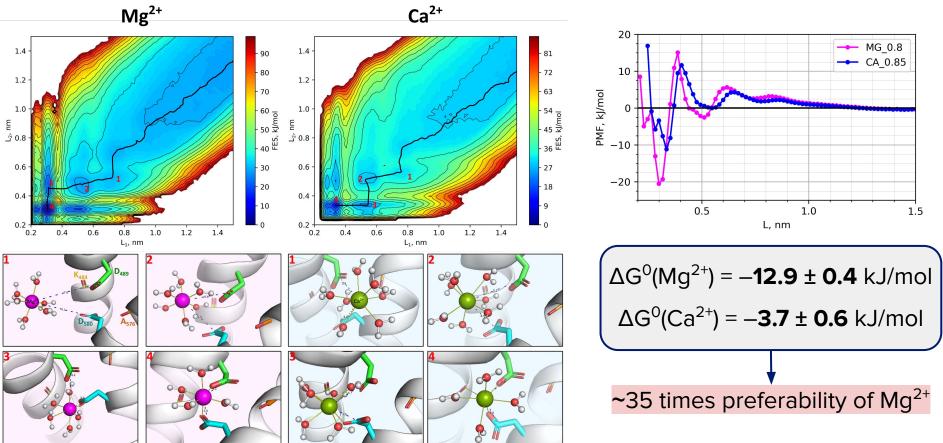
Introduction


3


Introduction Methods >

Methodology

- Model system: D489-D580 site with Mg²⁺ or Ca²⁺
- Electronic Continuum Correction + Amber-99sd-ildn FF
- Well-Tempered Metadynamics with CVs:
 - CN_w number of H₂O oxygen atoms in the 1st coordination shell of the cation;
 - \circ **L₁, L₂** distances between the carbon atoms of COO-groups and the cation.


Verification

 ΔG^{0} (kJ/mol) CH₃COO⁻-cation system with different ECC scaling factors (SF)

	Experiment	SF=0.8	SF=0.85	SF=1
Mg ²⁺	(-7.3) - (-3.4)	-3.7 ± 0.1	-	6 ± 13
Ca ²⁺	(-6.8) - (-2.5)	0.0 ± 0.4	-3.0 ± 0.2	-11.7 ± 0.1

Modeling of Mg²⁺/ Ca²⁺ binding to D489-D580

Conclusion

The **developed protocol** for calculating binding novel intracellular site free energy (ΔG^0) at ion-binding sites was (**D489-D580**) in TRPV6 shows **high** selectivity for Mg²⁺ validated using experimental CH₃COO⁻ data. These results **aligns** with the findings **Proposed mechanism:** intracellular Mg²⁺ binding to D489-D580 from cryo-electron microscopy site stabilizes TRPV6 in a closed state **electrophysiology** studies Significance:

The obtained results open new avenues for developing therapies targeting TRPV6-associated diseases, including cancers.

MAGNESIUM BINDING TO TRPV6 ION CHANNEL: INSIGHTS FROM MOLECULAR MODELING

Veretenenko I.I.^{1,2} (veretenenko.ii@phystech.edu), Trofimov Yu.A.^{1,3}, Efremov R.G.^{1,4}

¹ Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow; ² Moscow Institute of Physics and Technology (MIPT), Dolgoprudny ³ Research Institute for Systems Biology and Medicine (RISBM), Moscow; ⁴National Research University "Higher School of Economics", Moscow, Russia

This study was supported by RSF arant N°23-14-00313

Thank you for attention!

Neuberger, A., Shalygin, A., Veretenenko, I. et al. The locking mechanism of human TRPV6 inhibition by intracellular magnesium. Nat Commun (in press)

